Skip to main content
Log in

A coumarin exudation pathway mitigates arbuscular mycorrhizal incompatibility in Arabidopsis thaliana

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Key message

Overexpression of genes involved in coumarin production and secretion can mitigate mycorrhizal incompatibility in nonhost Arabidopsis plants. The coumarin scopoletin, in particular, stimulates pre-penetration development and metabolism in mycorrhizal fungi.

Abstract

Although most plants can benefit from mutualistic associations with arbuscular mycorrhizal (AM) fungi, nonhost plant species such as the model Arabidopsis thaliana have acquired incompatibility. The transcriptional response of Arabidopsis to colonization by host-supported AM fungi switches from initial AM recognition to defense activation and plant growth antagonism. However, detailed functional information on incompatibility in nonhost–AM fungus interactions is largely missing. We studied interactions between host-sustained AM fungal networks of Rhizophagus irregularis and 18 Arabidopsis genotypes affected in nonhost penetration resistance, coumarin production and secretion, and defense (salicylic acid, jasmonic acid, and ethylene) and growth hormones (auxin, brassinosteroid, cytokinin, and gibberellin). We demonstrated that root-secreted coumarins can mitigate incompatibility by stimulating fungal metabolism and promoting initial steps of AM colonization. Moreover, we provide evidence that major molecular defenses in Arabidopsis do not operate as primary mechanisms of AM incompatibility nor of growth antagonism. Our study reveals that, although incompatible, nonhost plants can harbor hidden tools that promote initial steps of AM colonization. Moreover, it uncovered the coumarin scopoletin as a novel signal in the pre-penetration dialogue, with possible implications for the chemical communication in plant–mycorrhizal fungi associations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Akiyama K, Matsuzaki K, Hayashi H (2005) Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435:824–827

    Article  CAS  PubMed  Google Scholar 

  • Banerjee S, Schlaeppi K, Van der Heijden MGA (2018) Keystone taxa as drivers of microbiome structure and functioning. Nat Rev Microbiol 16:567–576

    Article  CAS  PubMed  Google Scholar 

  • Behr M, Baldacci-Cresp F, Kohler A, Morreel K, Goeminne G, Van Acker R, Veneault-Fourrey C, Mol A, Pilate G, Boerjan W et al (2020) Alterations in the phenylpropanoid pathway affect poplar ability for ectomycorrhizal colonisation and susceptibility to root-knot nematodes. Mycorrhiza 30:555–566

    Article  CAS  PubMed  Google Scholar 

  • Bitterlich M, Sandmann M, Graefe J (2018) Arbuscular mycorrhiza alleviates restrictions to substrate water flow and delays transpiration limitation to stronger drought in tomato. Front Plant Sci 9:154

    Article  PubMed  PubMed Central  Google Scholar 

  • Bravo A, Brands M, Wewer V, Dörmann P, Harrison MJ (2017) Arbuscular mycorrhiza-specific enzymes FatM and RAM2 fine-tune lipid biosynthesis to promote development of arbuscular mycorrhiza. New Phytol 214:1631–1645

    Article  CAS  PubMed  Google Scholar 

  • Brundrett MC, Tedersoo L (2018) Evolutionary history of mycorrhizal symbioses and global host plant diversity. New Phytol 220:1108–1115

    Article  PubMed  Google Scholar 

  • Bucher M, Hause B, Krajinski F, Küster H (2014) Through the doors of perception to function in arbuscular mycorrhizal symbioses. New Phytol 204:833–840

    Article  CAS  PubMed  Google Scholar 

  • Bueno CG, Gerz M, Zobel M, Moora M (2018) Conceptual differences lead to divergent trait estimates in empirical and taxonomic approaches to plant mycorrhizal trait assignment. Mycorrhiza 29:1–11

    Article  CAS  Google Scholar 

  • Cao H, Bowling SA, Gordon AS, Dong X (1994) Characterization of an Arabidopsis mutant that is nonresponsive to inducers of systemic acquired resistance. Plant Cell 6:1583–1592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chutia R, Abel S, Ziegler J (2019) Iron and phosphate deficiency regulators concertedly control coumarin profiles in Arabidopsis thaliana roots during iron, phosphate, and combined deficiencies. Front Plant Sci 10:113

    Article  PubMed  PubMed Central  Google Scholar 

  • Cosme M, Franken P, Mewis I, Baldermann S, Wurst S (2014) Arbuscular mycorrhizal fungi affect glucosinolate and mineral element composition in leaves of Moringa oleifera. Mycorrhiza 24:565–570

    Article  CAS  PubMed  Google Scholar 

  • Cosme M, Fernández I, Van der Heijden MGA, Pieterse CMJ (2018) Non-mycorrhizal plants: the exceptions that prove the rule. Trends Plant Sci 23:577–587

    Article  CAS  PubMed  Google Scholar 

  • Davison J, Moora M, Öpik M, Adholeya A, Ainsaar L, Bâ A, Burla S, Diedhiou AG, Hiiesalu I, Jairus T et al (2015) Global assessment of arbuscular mycorrhizal fungus diversity reveals very low endemism. Science 349:970–973

    Article  CAS  PubMed  Google Scholar 

  • Declerck S, Strullu DG, Plenchette C (1998) Monoxenic culture of the intraradical forms of Glomus sp. isolated from a tropical ecosystem: a proposed methodology for germplasm collection. Mycologia 90:579–585

    Article  Google Scholar 

  • Delaux P-M, Séjalon-Delmas N, Bécard G, Ané J-M (2013) Evolution of the plant–microbe symbiotic “toolkit.” Trends Plant Sci 18:298–304

    Article  CAS  PubMed  Google Scholar 

  • Delaux P-M, Varala K, Edger PP, Coruzzi GM, Pires JC, Ané J-M (2014) Comparative phylogenomics uncovers the impact of symbiotic associations on host genome evolution. PLoS Genet 10:e1004487

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • DeMars BG, Boerner REJ (1996) Vesicular arbuscular mycorrhizal development in the Brassicaceae in relation to plant life span. Flora 191:179–189

    Article  Google Scholar 

  • Dharmasiri N, Dharmasiri S, Estelle M (2005) The F-box protein TIR1 is an auxin receptor. Nature 435:441–445

    Article  CAS  PubMed  Google Scholar 

  • Dickson S (2004) The Arum-Paris continuum of mycorrhizal symbioses. New Phytol 163:187–200

    Article  CAS  PubMed  Google Scholar 

  • Doner LW, Bécard G (1991) Solubilization of gellan gels by chelation of cations. Biotechnol Tech 5:25–28

    Article  CAS  Google Scholar 

  • Falk A, Feys BJ, Frost LN, Jones JDG, Daniels MJ, Parker JE (1999) EDS1, an essential component of R gene-mediated disease resistance in Arabidopsis has homology to eukaryotic lipases. Proc Natl Acad Sci USA 96:3292–3297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fernández I, Cosme M, Stringlis IA, Yu K, De Jonge R, Van Wees SCM, Pozo MJ, Pieterse CMJ, Van der Heijden MGA (2019) Molecular dialogue between arbuscular mycorrhizal fungi and the nonhost plant Arabidopsis thaliana switches from initial detection to antagonism. New Phytol 223:867–881

    Article  PubMed  CAS  Google Scholar 

  • Francis R, Read DJ (1994) The contributions of mycorrhizal fungi to the determination of plant community structure. Plant Soil 159:11–25

    Article  Google Scholar 

  • Frye CA, Innes RW (1998) An Arabidopsis mutant with enhanced resistance to powdery mildew. Plant Cell 10:947–956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Genre A, Chabaud M, Balzergue C, Puech-Pagès V, Novero M, Rey T, Fournier J, Rochange S, Bécard G, Bonfante P et al (2013) Short-chain chitin oligomers from arbuscular mycorrhizal fungi trigger nuclear Ca2+ spiking in Medicago truncatula roots and their production is enhanced by strigolactone. New Phytol 198:190–202

    Article  PubMed  Google Scholar 

  • Goh DM, Cosme M, Kisiala AB, Mulholland S, Said ZMF, Spíchal L, Emery RJN, Declerck S, Guinel FC (2019) A stimulatory role for cytokinin in the arbuscular mycorrhizal symbiosis of Pea. Front Plant Sci 10:262

    Article  PubMed  PubMed Central  Google Scholar 

  • Guzmán P, Ecker JR (1990) Exploiting the triple response of Arabidopsis to identify ethylene-related mutants. Plant Cell 2:513–523

    PubMed  PubMed Central  Google Scholar 

  • Hajiboland R, Sadeghzadeh N, Moradtalab N, Aliasgharzad N, Schweikert K, Poschenrieder C (2020) The arbuscular mycorrhizal mycelium from barley differentially influences various defense parameters in the non-host sugar beet under co-cultivation. Mycorrhiza 30:647–661

    Article  CAS  PubMed  Google Scholar 

  • Hiruma K, Nishiuchi T, Kato T, Bednarek P, Okuno T, Schulze-Lefert P, Takano Y (2011) Arabidopsis ENHANCED DISEASE RESISTANCE 1 is required for pathogen-induced expression of plant defensins in nonhost resistance, and acts through interference of MYC2-mediated repressor function. Plant J 67:980–992

    Article  CAS  PubMed  Google Scholar 

  • Huot B, Yao J, Montgomery BL, He SY (2014) Growth-defense tradeoffs in plants: a balancing act to optimize fitness. Mol Plant 7:1267–1287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Javot H, Penmetsa RV, Terzaghi N, Cook DR, Harrison MJ (2007) A Medicago truncatula phosphate transporter indispensable for the arbuscular mycorrhizal symbiosis. Proc Natl Acad Sci USA 104:1720–1725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin CW, You GY, He YF, Tang C, Wu P, Zheng SJ (2007) Iron deficiency-induced secretion of phenolics facilitates the reutilization of root apoplastic iron in red clover. Plant Physiol 144:278–285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johansson ON, Fantozzi E, Fahlberg P, Nilsson AK, Buhot N, Tör M, Andersson MX (2014) Role of the penetration-resistance genes PEN1, PEN2 and PEN3 in the hypersensitive response and race-specific resistance in Arabidopsis thaliana. Plant J 79:466–476

    Article  CAS  PubMed  Google Scholar 

  • Johnson NC, Wilson GWT, Wilson JA, Miller RM, Bowker MA (2015) Mycorrhizal phenotypes and the law of the minimum. New Phytol 205:1473–1484

    Article  CAS  PubMed  Google Scholar 

  • Jung SC, Martinez-Medina A, Lopez-Raez JA, Pozo MJ (2012) Mycorrhiza-induced resistance and priming of plant defenses. J Chem Ecol 38:651–664

    Article  CAS  PubMed  Google Scholar 

  • Kai K, Mizutani M, Kawamura N, Yamamoto R, Tamai M, Yamaguchi H, Sakata K, Shimizu B-i (2008) Scopoletin is biosynthesized via ortho-hydroxylation of feruloyl CoA by a 2-oxoglutarate-dependent dioxygenase in Arabidopsis thaliana. Plant J 55:989–999

    Article  CAS  PubMed  Google Scholar 

  • Kameoka H, Tsutsui I, Saito K, Kikuchi Y, Handa Y, Ezawa T, Hayashi H, Kawaguchi M, Akiyama K (2019) Stimulation of asymbiotic sporulation in arbuscular mycorrhizal fungi by fatty acids. Nat Microbiol 4:1654–1660

    Article  CAS  PubMed  Google Scholar 

  • Kim G-T, Fujioka S, Kozuka T, Tax FE, Takatsuto S, Yoshida S, Tsukaya H (2005) CYP90C1 and CYP90D1 are involved in different steps in the brassinosteroid biosynthesis pathway in Arabidopsis thaliana. Plant J 41:710–721

    Article  CAS  PubMed  Google Scholar 

  • Koffi MC, Declerck S (2015) In vitro mycorrhization of banana (Musa acuminata) plantlets improves their growth during acclimatization. Vitro Cell Dev Biol Plant 51:265–273

    Article  Google Scholar 

  • Kruckelmann W (1975) Effects of fertilizers, soils, soil tillage, and plant species on the frequency of Endogone chlamydospores and mycorrhizal infection in arable soils. In: Sanders FE, Mosse B, Tinker PB (eds) Endomycorrhizas. Academic Press, London, pp 511–525

    Google Scholar 

  • Lambers H, Albornoz F, Kotula L, Laliberté E, Ranathunge K, Teste FP, Zemunik G (2018) How belowground interactions contribute to the coexistence of mycorrhizal and non-mycorrhizal species in severely phosphorus-impoverished hyperdiverse ecosystems. Plant Soil 424:11–33

    Article  CAS  Google Scholar 

  • Maillet F, Poinsot V, Andre O, Puech-Pages V, Haouy A, Gueunier M, Cromer L, Giraudet D, Formey D, Niebel A et al (2011) Fungal lipochitooligosaccharide symbiotic signals in arbuscular mycorrhiza. Nature 469:58–63

    Article  CAS  PubMed  Google Scholar 

  • Mayzlish-Gati E, De-Cuyper C, Goormachtig S, Beeckman T, Vuylsteke M, Brewer PB, Beveridge CA, Yermiyahu U, Kaplan Y, Enzer Y et al (2012) Strigolactones are involved in root response to low phosphate conditions in Arabidopsis. Plant Physiol 160:1329–1341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McGonigle TP, Miller MH, Evans DG, Fairchild GL, Swan JA (1990) A new method which gives an objective measure of colonization of roots by vesicular-arbuscular mycorrhizal fungi. New Phytol 115:495–501

    Article  CAS  PubMed  Google Scholar 

  • Nawrath C, Métraux J-P (1999) Salicylic acid induction–deficient mutants of Arabidopsis express PR-2 and PR-5 and accumulate high levels of camalexin after pathogen inoculation. Plant Cell 11:1393–1404

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nawrath C, Heck S, Parinthawong N, Métraux J-P (2002) EDS5, an essential component of salicylic acid–dependent signaling for disease resistance in Arabidopsis, is a member of the MATE transporter family. Plant Cell 14:275–286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Newman EI (1966) A method of estimating the total length of root in a sample. J Appl Ecol 3:139–145

    Article  Google Scholar 

  • Orłowska E, Zubek S, Jurkiewicz A, Szarek- Łukaszewska G, Turnau K (2002) Influence of restoration on arbuscular mycorrhiza of Biscutella laevigata L. (Brassicaceae) and Plantago lanceolata L. (Plantaginaceae) from calamine spoil mounds. Mycorrhiza 12:153–159

    Article  PubMed  CAS  Google Scholar 

  • Pangesti N, Reichelt M, Van de Mortel JE, Kapsomenou E, Gershenzon J, Van Loon JJA, Dicke M, Pineda A (2016) Jasmonic acid and ethylene signaling pathways regulate glucosinolate levels in plants during rhizobacteria-induced systemic resistance against a leaf-chewing herbivore. J Chem Ecol 42:1212–1225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peterson R, Ashford A, Allaway W (1985) Vesicular-arbuscular mycorrhizal associations of vascular plants on Heron Island, a great barrier reef coral cay. Aust J Bot 33:669–676

    Article  Google Scholar 

  • Phillips JM, Hayman DS (1970) Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Br Mycol Soc 55:158–161

    Article  Google Scholar 

  • Pieterse CMJ, Van der Does D, Zamioudis C, Leon-Reyes A, Van Wees SCM (2012) Hormonal modulation of plant immunity. Annu Rev Cell Dev Biol 28:489–521

    Article  CAS  PubMed  Google Scholar 

  • Poveda J, Hermosa R, Monte E, Nicolás C (2019) Trichoderma harzianum favours the access of arbuscular mycorrhizal fungi to non-host Brassicaceae roots and increases plant productivity. Sci Rep 9:11650

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rieu I, Ruiz-Rivero O, Fernandez-Garcia N, Griffiths J, Powers SJ, Gong F, Linhartova T, Eriksson S, Nilsson O, Thomas SG et al (2008) The gibberellin biosynthetic genes AtGA20ox1 and AtGA20ox2 act, partially redundantly, to promote growth and development throughout the Arabidopsis life cycle. Plant J 53:488–504

    Article  CAS  PubMed  Google Scholar 

  • Rillig MC, Aguilar-Trigueros CA, Camenzind T, Cavagnaro TR, Degrune F, Hohmann P, Lammel DR, Mansour I, Roy J, Van der Heijden MGA et al (2019) Why farmers should manage the arbuscular mycorrhizal symbiosis. New Phytol 222:1171–1175

    Article  PubMed  Google Scholar 

  • Saito M, Stribley DP, Hepper CM (1993) Succinate dehydrogenase activity of external and internal hyphae of a vesicular-arbuscular mycorrhizal fungus, Glomus mosseae (Nicol. & Gerd.) Gerdmann and Trappe, during mycorrhizal colonization of roots of leek (Allium porrum L.), as revealed by in situ histochemical staining. Mycorrhiza 4:59–62

    Article  CAS  Google Scholar 

  • Schmid NB, Giehl RFH, Döll S, Mock H-P, Strehmel N, Scheel D, Kong X, Hider RC, von Wirén N (2014) Feruloyl-CoA 6′-Hydroxylase1-dependent coumarins mediate iron acquisition from alkaline substrates in Arabidopsis. Plant Physiol 164:160–172

    Article  CAS  PubMed  Google Scholar 

  • Siddiky MRK, Kohler J, Cosme M, Rillig MC (2012) Soil biota effects on soil structure: Interactions between arbuscular mycorrhizal fungal mycelium and collembola. Soil Biol Biochem 50:33–39

    Article  CAS  Google Scholar 

  • Sisó-Terraza P, Luis-Villarroya A, Fourcroy P, Briat J-F, Abadía A, Gaymard F, Abadía J, Álvarez-Fernández A (2016) Accumulation and secretion of coumarinolignans and other coumarins in Arabidopsis thaliana roots in response to iron deficiency at high pH. Front Plant Sci 7:1711

    Article  PubMed  PubMed Central  Google Scholar 

  • Stassen MJJ, Hsu S-H, Pieterse CMJ, Stringlis IA (2021) Coumarin communication along the microbiome–root–shoot axis. Trends Plant Sci 26:169–183

    Article  CAS  PubMed  Google Scholar 

  • Stringlis IA, Proietti S, Hickman R, Van Verk MC, Zamioudis C, Pieterse CMJ (2018a) Root transcriptional dynamics induced by beneficial rhizobacteria and microbial immune elicitors reveal signatures of adaptation to mutualists. Plant J 93:166–180

    Article  CAS  PubMed  Google Scholar 

  • Stringlis IA, Yu K, Feussner K, De Jonge R, Van Bentum S, Van Verk MC, Berendsen RL, Bakker PAHM, Feussner I, Pieterse CMJ (2018b) MYB72-dependent coumarin exudation shapes root microbiome assembly to promote plant health. Proc Natl Acad Sci USA 115:E5213–E5222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stringlis IA, De Jonge R, Pieterse CMJ (2019) The age of coumarins in plant–microbe interactions. Plant Cell Physiol 60:1405–1419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tommerup IC (1984) Development of infection by a vesicular-arbuscular mycorrhizal fungus in Brassica napus L. and Trifolium subterraneum L. New Phytol 98:487–495

    Article  Google Scholar 

  • Toro KS, Brachmann A (2016) The effector candidate repertoire of the arbuscular mycorrhizal fungus Rhizophagus clarus. BMC Genomics 17:101

    Article  CAS  Google Scholar 

  • Tsai HH, Schmidt W (2017a) Mobilization of iron by plant-borne coumarins. Trends Plant Sci 22:538–548

    Article  CAS  PubMed  Google Scholar 

  • Tsai HH, Schmidt W (2017b) One way. Or another? Iron uptake in plants. New Phytol 214:500–505

    Article  CAS  PubMed  Google Scholar 

  • Van Butselaar T, Van den Ackerveken G (2020) Salicylic acid steers the growth–immunity tradeoff. Trends Plant Sci 25:566–576

    Article  PubMed  CAS  Google Scholar 

  • Van der Ent S, Verhagen BWM, Van Doorn R, Bakker D, Verlaan MG, Pel MJC, Joosten RG, Proveniers MCG, Van Loon LC, Ton J et al (2008) MYB72 is required in early signaling steps of rhizobacteria-induced systemic resistance in Arabidopsis. Plant Physiol 146:1293–1304

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Van der Heijden MGA, Martin FM, Selosse M-A, Sanders IR (2015) Mycorrhizal ecology and evolution: the past, the present, and the future. New Phytol 205:1406–1423

    Article  PubMed  CAS  Google Scholar 

  • Veiga RSL, Jansa J, Frossard E, Van der Heijden MGA (2011) Can arbuscular mycorrhizal fungi reduce the growth of agricultural weeds? PLoS ONE 6:e27825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Veiga RSL, Faccio A, Genre A, Pieterse CMJ, Bonfante P, Van der Heijden MGA (2013) Arbuscular mycorrhizal fungi reduce growth and infect roots of the non-host plant Arabidopsis thaliana. Plant, Cell Environ 36:1926–1937

    Google Scholar 

  • Vishwanathan K, Zienkiewicz K, Liu Y, Janz D, Feussner I, Polle A, Haney CH (2020) Ectomycorrhizal fungi induce systemic resistance against insects on a nonmycorrhizal plant in a CERK1-dependent manner. New Phytol. https://doi.org/10.1111/nph.16715

    Article  PubMed  Google Scholar 

  • Voets L, Dupré de Boulois H, Renard L, Strullu D-G, Declerck S (2005) Development of an autotrophic culture system for the in vitro mycorrhization of potato plantlets. FEMS Microbiol Lett 248:111–118

    Article  CAS  PubMed  Google Scholar 

  • Voges MJEEE, Bai Y, Schulze-Lefert P, Sattely ES (2019) Plant-derived coumarins shape the composition of an Arabidopsis synthetic root microbiome. Proc Natl Acad Sci USA 116:12558–12565

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Von Malek B, Van der Graaff E, Schneitz K, Keller B (2002) The Arabidopsis male-sterile mutant dde2-2 is defective in the ALLENE OXIDE SYNTHASE gene encoding one of the key enzymes of the jasmonic acid biosynthesis pathway. Planta 216:187–192

    Article  CAS  Google Scholar 

  • Walton A, Stes E, Goeminne G, Braem L, Vuylsteke M, Matthys C, De Cuyper C, Staes A, Vandenbussche J, Boyer F-D et al (2016) The response of the root proteome to the synthetic strigolactone GR24 in Arabidopsis. Mol Cell Proteomics 15:2744–2755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang B, Qiu YL (2006) Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza 16:299–363

    Article  CAS  PubMed  Google Scholar 

  • Werner T, Nehnevajova E, Köllmer I, Novák O, Strnad M, Krämer U, Schmülling T (2010) Root-specific reduction of cytokinin causes enhanced root growth, drought tolerance, and leaf mineral enrichment in Arabidopsis and tobacco. Plant Cell 22:3905–3920

    Article  PubMed  PubMed Central  Google Scholar 

  • Yu K, Liu Y, Tichelaar R, Savant N, Lagendijk E, Van Kuijk SJL, Stringlis IA, Van Dijken AJH, Pieterse CMJ, Bakker PAHM et al (2019a) Rhizosphere-associated Pseudomonas suppress local root immune responses by gluconic acid-mediated lowering of environmental pH. Curr Biol 29:3913–3920

    Article  CAS  PubMed  Google Scholar 

  • Yu K, Pieterse CMJ, Bakker PAHM, Berendsen RL (2019b) Beneficial microbes going underground of root immunity. Plant Cell Environ 42:2860–2870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zamioudis C, Hanson J, Pieterse CMJ (2014) β-Glucosidase BGLU42 is a MYB72-dependent key regulator of rhizobacteria-induced systemic resistance and modulates iron deficiency responses in Arabidopsis roots. New Phytol 204:368–379

    Article  CAS  PubMed  Google Scholar 

  • Zhang Q, Blaylock LA, Harrison MJ (2010) Two Medicago truncatula half-ABC transporters are essential for arbuscule development in arbuscular mycorrhizal symbiosis. Plant Cell 22:1483–1497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ziegler J, Schmidt S, Chutia R, Müller J, Böttcher C, Strehmel N, Scheel D, Abel S (2016) Non-targeted profiling of semi-polar metabolites in Arabidopsis root exudates uncovers a role for coumarin secretion and lignification during the local response to phosphate limitation. J Exp Bot 67:1421–1432

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded by NWO Grant 823.02.019 of The Netherlands Organization for Scientific Research, Incoming Post-doctoral Fellowship of the Fonds Spéciaux de Recherche from the Wallonie-Bruxelles Federation of Belgium (to M.C.), and ERC Advanced Investigator Grant No. 269072 of the European Research Council (to C.M.J.P.). The authors are thankful to Daniel Grimm and Maryline Calonne for help with some of the experiments, and to Emilie Reinen, Joyce Elberse, Ioannis Stringlis, Ke Yu and Thomas Schmülling for providing Arabidopsis seeds.

Author information

Authors and Affiliations

Authors

Contributions

All authors planned and designed the research. MC performed the experiments. MC, SD, MGAvdH and CMJP analyzed results. All authors wrote the manuscript.

Corresponding author

Correspondence to Marco Cosme.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 631 KB)

Supplementary file2 (XLSX 13 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cosme, M., Fernández, I., Declerck, S. et al. A coumarin exudation pathway mitigates arbuscular mycorrhizal incompatibility in Arabidopsis thaliana. Plant Mol Biol 106, 319–334 (2021). https://doi.org/10.1007/s11103-021-01143-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-021-01143-x

Keywords

Navigation