Skip to main content
Log in

The C-terminal cysteine-rich motif of NYE1/SGR1 is indispensable for its function in chlorophyll degradation in Arabidopsis

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Key message

The C-terminal cysteine-rich motif of NYE1/SGR1 affects chlorophyll degradation likely by mediating its self-interaction and conformational change, and somehow altering its Mg-dechelating activity in response to the changing redox potential.

Abstract

During green organ senescence in plants, the most prominent phenomenon is the degreening caused by net chlorophyll (Chl) loss. NON-YELLOWING1/STAY-GREEN1 (NYE1/SGR1) was recently reported to be able to dechelates magnesium (Mg) from Chl a to initiate its degradation, but little is known about the domain/motif basis of its functionality. In this study, we carried out a protein truncation assay and identified a conserved cysteine-rich motif (CRM, P-X3-C-X3-C-X-C2-F-P-X5-P) at its C terminus, which is essential for its function. Genetic analysis showed that all four cysteines in the CRM were irreplaceable, and enzymatic assays demonstrated that the mutation of each of the four cysteines affected its Mg-dechelating activity. The CRM plays a critical role in the conformational change and self-interaction of NYE1 via the formation of inter- and intra-molecular disulfide bonds. Our results may provide insight into how NYE1 responds to rapid redox changes during leaf senescence and in response to various environmental stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Armstead I, Donnison I, Aubry S, Harper J, Hortensteiner S, James C, Mani J, Moffet M, Ougham H, Roberts L, Thomas A, Weeden N, Thomas H, King I (2006) From crop to model to crop: identifying the genetic basis of the staygreen mutation in the Lolium/Festuca forage and amenity grasses. New Phytol 172:592–597

    Article  Google Scholar 

  • Armstead I, Donnison I, Aubry S, Harper J, Hortensteiner S, James C, Mani J, Moffet M, Ougham H, Roberts L, Thomas A, Weeden N, Thomas H, King I (2007) Cross-species identification of Mendel’s I locus. Science 315:73

    Article  CAS  Google Scholar 

  • Aroca A, Serna A, Gotor C, Romero LC (2015) S-sulfhydration: a cysteine posttranslational modification in plant systems. Plant Physiol 168:334–342

    Article  CAS  Google Scholar 

  • Aubry S, Mani J, Hortensteiner S (2008) Stay-green protein, defective in Mendel’s green cotyledon mutant, acts independent and upstream of pheophorbide a oxygenase in the chlorophyll catabolic pathway. Plant Mol Biol 67:243–256

    Article  CAS  Google Scholar 

  • Barry CS, McQuinn RP, Chung MY, Besuden A, Giovannoni JJ (2008) Amino acid substitutions in homologs of the STAY-GREEN protein are responsible for the green-flesh and chlorophyll retainer mutations of tomato and pepper. Plant Physiol 147:179–187

    Article  CAS  Google Scholar 

  • Borovsky Y, Paran I (2008) Chlorophyll breakdown during pepper fruit ripening in the chlorophyll retainer mutation is impaired at the homolog of the senescence-inducible stay-green gene. Theor Appl Genet 117:235–240

    Article  CAS  Google Scholar 

  • Chen J, Zhu X, Ren J, Qiu K, Li Z, Xie Z, Gao J, Zhou X, Kuai B (2017) Suppressor of overexpression of CO 1 negatively regulates dark-induced leaf degreening and senescence by directly repressing pheophytinase and other senescence-associated genes in Arabidopsis. Plant Physiol 173:1881–1891

    Article  CAS  Google Scholar 

  • Chen Y, Shimoda Y, Yokono M, Ito H, Tanaka A (2019) Mg-dechelatase is involved in the formation of photosystem II but not in chlorophyll degradation in Chlamydomonas reinhardtii. Plant J 97:1022–1031

    Article  CAS  Google Scholar 

  • Christ B, Schelbert S, Aubry S, Sussenbacher I, Muller T, Krautler B, Hortensteiner S (2012) MES16, a member of the methylesterase protein family, specifically demethylates fluorescent chlorophyll catabolites during chlorophyll breakdown in Arabidopsis. Plant Physiol 158:628–641

    Article  CAS  Google Scholar 

  • Christ B, Sussenbacher I, Moser S, Bichsel N, Egert A, Muller T, Krautler B, Hortensteiner S (2013) Cytochrome P450 CYP89A9 is involved in the formation of major chlorophyll catabolites during leaf senescence in Arabidopsis. Plant Cell 25:1868–1880

    Article  CAS  Google Scholar 

  • Christ B, Egert A, Sussenbacher I, Krautler B, Bartels D, Peters S, Hortensteiner S (2014) Water deficit induces chlorophyll degradation via the ‘PAO/phyllobilin’ pathway in leaves of homoio- (Craterostigma pumilum) and poikilochlorophyllous (Xerophyta viscosa) resurrection plants. Plant Cell Environ 37:2521–2531

    Article  CAS  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  CAS  Google Scholar 

  • Delmas F, Sankaranarayanan S, Deb S, Widdup E, Bournonville C, Bollier N, Northey JG, McCourt P, Samuel MA (2013) ABI3 controls embryo degreening through Mendel’s I locus. Proc Natl Acad Sci USA 110:E3888–E3894

    Article  CAS  Google Scholar 

  • Fang C, Li C, Li W, Wang Z, Zhou Z, Shen Y, Wu M, Wu Y, Li G, Kong LA, Liu C, Jackson SA, Tian Z (2014) Concerted evolution of D1 and D2 to regulate chlorophyll degradation in soybean. Plant J 77:700–712

    Article  CAS  Google Scholar 

  • Gao S, Gao J, Zhu X, Song Y, Li Z, Ren G, Zhou X, Kuai B (2016) ABF2, ABF3, and ABF4 promote ABA-mediated chlorophyll degradation and leaf senescence by transcriptional activation of chlorophyll catabolic genes and senescence-associated genes in Arabidopsis. Mol Plant 9:1272–1285

    Article  CAS  Google Scholar 

  • Ge X, Dietrich C, Matsuno M, Li G, Berg H, Xia Y (2005) An Arabidopsis aspartic protease functions as an anti-cell-death component in reproduction and embryogenesis. EMBO Rep 6:282–288

    Article  CAS  Google Scholar 

  • Giles NM, Watts AB, Giles GI, Fry FH, Littlechild JA, Jacob C (2003) Metal and redox modulation of cysteine protein function. Chem Biol 10:677–693

    Article  CAS  Google Scholar 

  • Gray J, Close PS, Briggs SP, Johal GS (1997) A novel suppressor of cell death in plants encoded by the Lls1 gene of maize. Cell 89:25–31

    Article  CAS  Google Scholar 

  • Gray J, Wardzala E, Yang M, Reinbothe S, Haller S, Pauli F (2004) A small family of LLS1-related non-heme oxygenases in plants with an origin amongst oxygenic photosynthesizers. Plant Mol Biol 54:39–54

    Article  CAS  Google Scholar 

  • Hauenstein M, Christ B, Das A, Aubry S, Hortensteiner S (2016) A role for TIC55 as a hydroxylase of phyllobilins, the products of chlorophyll breakdown during plant senescence. Plant Cell 28:2510–2527

    Article  CAS  Google Scholar 

  • Hortensteiner S (2009) Stay-green regulates chlorophyll and chlorophyll-binding protein degradation during senescence. Trends Plant Sci 14:155–162

    Article  CAS  Google Scholar 

  • Jiang H, Li M, Liang N, Yan H, Wei Y, Xu X, Liu J, Xu Z, Chen F, Wu G (2007) Molecular cloning and function analysis of the stay green gene in rice. Plant J 52:197–209

    Article  CAS  Google Scholar 

  • Khanna-Chopra R (2012) Leaf senescence and abiotic stresses share reactive oxygen species-mediated chloroplast degradation. Protoplasma 249:469–481

    Article  CAS  Google Scholar 

  • Krautler B (2014) Phyllobilins—the abundant bilin-type tetrapyrrolic catabolites of the green plant pigment chlorophyll. Chem Soc Rev 43:6227–6238

    Article  Google Scholar 

  • Kuai B, Chen J, Hortensteiner S (2018) The biochemistry and molecular biology of chlorophyll breakdown. J Exp Bot 69:751–767

    Article  CAS  Google Scholar 

  • Li S, Gao J, Yao L, Ren G, Zhu X, Gao S, Qiu K, Zhou X, Kuai B (2016) The role of ANAC072 in the regulation of chlorophyll degradation during age- and dark-induced leaf senescence. Plant Cell Rep 35:1729–1741

    Article  CAS  Google Scholar 

  • Li Z, Wu S, Chen J, Wang X, Gao J, Ren G, Kuai B (2017) NYEs/SGRs-mediated chlorophyll degradation is critical for detoxification during seed maturation in Arabidopsis. Plant J 92:650–661

    Article  CAS  Google Scholar 

  • Lim PO, Kim HJ, Nam HG (2007) Leaf senescence. Annu Rev Plant Biol 58:115–136

    Article  CAS  Google Scholar 

  • Luo Z, Zhang J, Li J, Yang C, Wang T, Ouyang B, Li H, Giovannoni J, Ye Z (2013) A STAY-GREEN protein SlSGR1 regulates lycopene and beta-carotene accumulation by interacting directly with SlPSY1 during ripening processes in tomato. New Phytol 198:442–452

    Article  CAS  Google Scholar 

  • Matsuda K, Shimoda Y, Tanaka A, Ito H (2016) Chlorophyll a is a favorable substrate for Chlamydomonas Mg-dechelatase encoded by STAY-GREEN. Plant Physiol Biochem 109:365–373

    Article  CAS  Google Scholar 

  • Mecey C, Hauck P, Trapp M, Pumplin N, Plovanich A, Yao J, He SY (2011) A critical role of STAYGREEN/Mendel’s I locus in controlling disease symptom development during Pseudomonas syringae pv tomato infection of Arabidopsis. Plant Physiol 157:1965–1974

    Article  CAS  Google Scholar 

  • Meguro M, Ito H, Takabayashi A, Tanaka R, Tanaka A (2011) Identification of the 7-hydroxymethyl chlorophyll a reductase of the chlorophyll cycle in Arabidopsis. Plant Cell 23:3442–3453

    Article  CAS  Google Scholar 

  • Mou Z, Fan W, Dong X (2003) Inducers of plant systemic acquired resistance regulate NPR1 function through redox changes. Cell 113:935–944

    Article  CAS  Google Scholar 

  • Mur LA, Aubry S, Mondhe M, Kingston-Smith A, Gallagher J, Timms-Taravella E, James C, Papp I, Hortensteiner S, Thomas H, Ougham H (2010) Accumulation of chlorophyll catabolites photosensitizes the hypersensitive response elicited by Pseudomonas syringae in Arabidopsis. New Phytol 188:161–174

    Article  CAS  Google Scholar 

  • Pan J, Tan J, Wang Y, Zheng X, Owens K, Li D, Li Y, Weng Y (2018) STAYGREEN (CsSGR) is a candidate for the anthracnose (Colletotrichum orbiculare) resistance locus cla in Gy14 cucumber. Theor Appl Genet 131:1577–1587

    Article  CAS  Google Scholar 

  • Park SY, Yu JW, Park JS, Li J, Yoo SC, Lee NY, Lee SK, Jeong SW, Seo HS, Koh HJ, Jeon JS, Park YI, Paek NC (2007) The senescence-induced staygreen protein regulates chlorophyll degradation. Plant Cell 19:1649–1664

    Article  CAS  Google Scholar 

  • Pruzinska A, Tanner G, Anders I, Roca M, Hortensteiner S (2003) Chlorophyll breakdown: pheophorbide a oxygenase is a Rieske-type iron-sulfur protein, encoded by the accelerated cell death 1 gene. Proc Natl Acad Sci USA 100:15259–15264

    Article  CAS  Google Scholar 

  • Pruzinska A, Anders I, Aubry S, Schenk N, Tapernoux-Luthi E, Muller T, Krautler B, Hortensteiner S (2007) In vivo participation of red chlorophyll catabolite reductase in chlorophyll breakdown. Plant Cell 19:369–387

    Article  CAS  Google Scholar 

  • Qian L, Voss-Fels K, Cui Y, Jan HU, Samans B, Obermeier C, Qian W, Snowdon RJ (2016) Deletion of a stay-green gene associates with adaptive selection in Brassica napus. Mol Plant 9:1559–1569

    Article  CAS  Google Scholar 

  • Qiu K, Li Z, Yang Z, Chen J, Wu S, Zhu X, Gao S, Gao J, Ren G, Kuai B, Zhou X (2015) EIN3 and ORE1 accelerate degreening during ethylene-mediated leaf senescence by directly activating chlorophyll catabolic genes in Arabidopsis. PLoS Genet 11:e1005399

    Article  Google Scholar 

  • Ren G, An K, Liao Y, Zhou X, Cao Y, Zhao H, Ge X, Kuai B (2007) Identification of a novel chloroplast protein AtNYE1 regulating chlorophyll degradation during leaf senescence in Arabidopsis. Plant Physiol 144:1429–1441

    Article  CAS  Google Scholar 

  • Ren G, Zhou Q, Wu S, Zhang Y, Zhang L, Huang J, Sun Z, Kuai B (2010) Reverse genetic identification of CRN1 and its distinctive role in chlorophyll degradation in Arabidopsis. J Integr Plant Biol 52:496–504

    CAS  PubMed  Google Scholar 

  • Rissler HM, Collakova E, Dellapenna D, Whelan J, Pogson BJ (2002) Chlorophyll biosynthesis. Expression of a second chl I gene of magnesium chelatase in Arabidopsis supports only limited chlorophyll synthesis. Plant Physiol 128:770–779

    Article  CAS  Google Scholar 

  • Sakuraba Y, Schelbert S, Park SY, Han SH, Lee BD, Andres CB, Kessler F, Hortensteiner S, Paek NC (2012) STAY-GREEN and chlorophyll catabolic enzymes interact at light-harvesting complex II for chlorophyll detoxification during leaf senescence in Arabidopsis. Plant Cell 24:507–518

    Article  CAS  Google Scholar 

  • Sakuraba Y, Jeong J, Kang MY, Kim J, Paek NC, Choi G (2014a) Phytochrome-interacting transcription factors PIF4 and PIF5 induce leaf senescence in Arabidopsis. Nat Commun 5:4636

    Article  CAS  Google Scholar 

  • Sakuraba Y, Kim D, Kim YS, Hortensteiner S, Paek NC (2014b) Arabidopsis STAYGREEN-LIKE (SGRL) promotes abiotic stress-induced leaf yellowing during vegetative growth. FEBS Lett 588:3830–3837

    Article  CAS  Google Scholar 

  • Sakuraba Y, Park SY, Kim YS, Wang SH, Yoo SC, Hortensteiner S, Paek NC (2014c) Arabidopsis STAY-GREEN2 is a negative regulator of chlorophyll degradation during leaf senescence. Mol Plant 7:1288–1302

    Article  CAS  Google Scholar 

  • Sato Y, Morita R, Nishimura M, Yamaguchi H, Kusaba M (2007) Mendel’s green cotyledon gene encodes a positive regulator of the chlorophyll-degrading pathway. Proc Natl Acad Sci USA 104:14169–14174

    Article  CAS  Google Scholar 

  • Sato Y, Morita R, Katsuma S, Nishimura M, Tanaka A, Kusaba M (2009) Two short-chain dehydrogenase/reductases, NON-YELLOW COLORING 1 and NYC1-LIKE, are required for chlorophyll b and light-harvesting complex II degradation during senescence in rice. Plant J 57:120–131

    Article  CAS  Google Scholar 

  • Schelbert S, Aubry S, Burla B, Agne B, Kessler F, Krupinska K, Hortensteiner S (2009) Pheophytin pheophorbide hydrolase (pheophytinase) is involved in chlorophyll breakdown during leaf senescence in Arabidopsis. Plant Cell 21:767–785

    Article  CAS  Google Scholar 

  • Shimoda Y, Ito H, Tanaka A (2016) Arabidopsis STAY-GREEN, Mendel’s green cotyledon gene, encodes magnesium-dechelatase. Plant Cell 28:2147–2160

    Article  CAS  Google Scholar 

  • Song Y, Yang C, Gao S, Zhang W, Li L, Kuai B (2014) Age-triggered and dark-induced leaf senescence require the bHLH transcription factors PIF3, 4, and 5. Mol Plant 7:1776–1787

    Article  CAS  Google Scholar 

  • Wang Y, Yun BW, Kwon E, Hong JK, Yoon J, Loake GJ (2006) S-nitrosylation: an emerging redox-based post-translational modification in plants. J Exp Bot 57:1777–1784

    Article  CAS  Google Scholar 

  • Wang X, Gao J, Gao S, Song Y, Yang Z, Kuai B (2019) The H3K27me3 demethylase REF6 promotes leaf senescence through directly activating major senescence regulatory and functional genes in Arabidopsis. PLoS Genet 15:e1008068

    Article  CAS  Google Scholar 

  • Wu S, Li Z, Yang L, Xie Z, Chen J, Zhang W, Liu T, Gao S, Gao J, Zhu Y, Xin J, Ren G, Kuai B (2016) NON-YELLOWING2 (NYE2), a close paralog of NYE1, plays a positive role in chlorophyll degradation in Arabidopsis. Mol Plant 9:624–627

    Article  CAS  Google Scholar 

  • Zhou C, Han L, Pislariu C, Nakashima J, Fu C, Jiang Q, Quan L, Blancaflor EB, Tang Y, Bouton JH, Udvardi M, Xia G, Wang ZY (2011) From model to crop: functional analysis of a STAY-GREEN gene in the model legume Medicago truncatula and effective use of the gene for alfalfa improvement. Plant Physiol 157:1483–1496

    Article  CAS  Google Scholar 

  • Zhou J, Wang J, Cheng Y, Chi YJ, Fan B, Yu JQ, Chen Z (2013) NBR1-mediated selective autophagy targets insoluble ubiquitinated protein aggregates in plant stress responses. PLoS Genet 10:e1004477

    Google Scholar 

  • Zhu X, Chen J, Xie Z, Gao J, Ren G, Gao S, Zhou X, Kuai B (2015) Jasmonic acid promotes degreening via MYC2/3/4- and ANAC019/055/072-mediated regulation of major chlorophyll catabolic genes. Plant J 84:597–610

    Article  CAS  Google Scholar 

  • Zhu X, Chen J, Qiu K, Kuai B (2017) Phytohormone and light regulation of chlorophyll degradation. Front Plant Sci 8:1911

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to Jianxiang Liu for sharing pXY103 and pXY104 vectors, and Tongshui Zhou and Guojun Zhou for technical assistance on HPLC analysis. This work was supported by grants from the National Natural Science Foundation of China (31670287) to BK, the Science and Technology Commission of Shanghai Municipality (15JC1400800) to GR and the Swiss National Science Foundation (31003A_172977) to SH.

Funding

This work was supported by grants from the National Natural Science Foundation of China (31670287) to BK, the Science and Technology Commission of Shanghai Municipality (2015JC1400800) to GR, and the Swiss National Science Foundation (31003A_172977) to SH.

Author information

Authors and Affiliations

Authors

Contributions

Conceived and designed the experiments: BK, GR, SH, ZX, JC. Performed the experiments: ZX, SW, JC, XZhu. Analyzed the data: ZX, JC. Contributed reagents/materials/analysis tools: XZho, SH. Wrote the paper: BK, GR, ZX, JC, SH, XZhu.

Corresponding authors

Correspondence to Guodong Ren or Benke Kuai.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Accession numbers: NYE1 (AT4G22920), HCAR (AT1G04620), NYC1 (AT4G13250), NOL (AT5G04900), PPH (AT5G13800), PAO (AT3G44880), RCCR (AT4G37000).

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 559 kb)

Supplementary material 2 (DOCX 22 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, Z., Wu, S., Chen, J. et al. The C-terminal cysteine-rich motif of NYE1/SGR1 is indispensable for its function in chlorophyll degradation in Arabidopsis. Plant Mol Biol 101, 257–268 (2019). https://doi.org/10.1007/s11103-019-00902-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-019-00902-1

Keywords

Navigation