Skip to main content
Log in

Identified trans-splicing of YELLOW-FRUITED TOMATO 2 encoding the PHYTOENE SYNTHASE 1 protein alters fruit color by map-based cloning, functional complementation and RACE

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Key message

Found a trans-splicing of PHYTOENE SYNTHASE 1 alters tomato fruit color by map-based cloning, functional complementation and RACE providing an insight into fruit color development.

Abstract

Color is an important fruit quality trait and a major determinant of the economic value of tomato (Solanum lycopersicum). Fruit color inheritance in a yellow-fruited cherry tomato (cv. No. 22), named yellow-fruited tomato 2 (yft2), was shown to be controlled by a single recessive gene, YFT2. The YFT2 gene was mapped in a 95.7 kb region on chromosome 3, and the candidate gene, PHYTOENE SYNTHASE 1 (PSY1), was confirmed by functional complementation analysis. Constitutive over expression of PSY1 in yft2 increased the accumulation of carotenoids and resulted in a red fruit color, while no causal mutation was detected in the YFT2 allele of yft2, compared with red-fruited SL1995 cherry tomato or cultivated variety (cv. M82). Expression of YFT2 3′ region in yft2 was significantly lower than in SL1995, and further studies revealed a difference in YFT2 post-transcriptional processing in yft2 compared with SL1995 and cv. M82, resulting in a longer YFT2 transcript. The alternatively trans-spliced allele of YFT2 in yft2 is predicted to encode a novel LT-YFT2 protein of 432 amino acid (AA) residues, compared to the 412 AA YFT2 protein of SL1995. The trans-spliced event also resulted in significantly down regulated expression of YFT2 in yft2 tomato, and the YFT2 allele suppressed expression of the downstream genes involved in the carotenoid biosynthesis pathway and carotenoids synthesis by a mechanism of the feed-forward regulation. In conclusion, we found that trans-splicing of YFT2 alters tomato fruit color, providing new insights into fruit color development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ballester AR, Molthoff J, de Vos R, Hekkert BTL, Orzaez D, Fernandez-Moreno JP, Tripodi P, Grandillo S, Martin C, Heldens J et al (2010) Biochemical and molecular analysis of pink tomatoes: deregulated expression of the gene encoding transcription factor S1MYB12 leads to pink tomato fruit color. Plant Physiol 152:71–84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Banerjee A, Sharkey T (2014) Methylerythritol 4-phosphate (MEP) pathway metabolic regulation. Nat Prod Rep 31:1043–1055

    Article  CAS  PubMed  Google Scholar 

  • Bedinger PA, Chetelat RT, McClure B, Moyle LC, Rose JK, Stack SM, van der Knaap E, Baek YS, Lopez-Casado G, Covey PA et al (2011) Interspecific reproductive barriers in the tomato clade: opportunities to decipher mechanisms of reproductive isolation. Sex Plant Reprod 24:171–187

    Article  PubMed  Google Scholar 

  • Bird CR, Ray JA, Fletcher JD, Boniwell JM, Bird AS, Teulieres C, Blain I, Bramley P, Schuch W (1991) Using antisense RNA to study gene function: inhibition of carotenoid biosynthesis in transgenic tomatoes. Nat Biotechnol 9:635–639

    Article  CAS  Google Scholar 

  • Bramley P, Teulieres C, Blain I, Bird C, Schuch W (1992) Biochemical characterization of transgenic tomato plants in which carotenoid synthesis has been inhibited through the expression of antisense RNA to pTOM5. Plant J 2:343–349

    Article  CAS  Google Scholar 

  • Broman KW, Wu H, Sen Ś, Churchill GA (2003) R/qtl: QTL mapping in experimental crosses. Bioinformatics 19:889–890

    Article  CAS  PubMed  Google Scholar 

  • Butelli E, Titta L, Giorgio M, Mock H-P, Matros A, Peterek S, Schijlen EG, Hall RD, Bovy AG, Luo J et al (2008) Enrichment of tomato fruit with health-promoting anthocyanins by expression of select transcription factors. Nat Biotechnol 26:1301

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Wang A, Zhao L, Shen G, Cui L, Tang K (2009) Expression of thymosin α1 concatemer in transgenic tomato (Solanum lycopersicum) fruits. Biotechnol Appl Biochem 52:303–312

    Article  CAS  PubMed  Google Scholar 

  • Cohen LA (2002) A review of animal model studies of tomato carotenoids, lycopene, and cancer chemoprevention. Exp Biol Med 227:864–868

    Article  CAS  Google Scholar 

  • Delgado-Vargas F, Jiménez A, Paredes-López O (2000) Natural pigments: carotenoids, anthocyanins, and betalains-characteristics, biosynthesis, processing, and stability. Crit Rev Food Sci Nutr 40:173–289

    Article  CAS  PubMed  Google Scholar 

  • Dvinge H, Kim E, Abdel-Wahab O, Bradley RK (2016) RNA splicing factors as oncoproteins and tumour suppressors. Nat Rev Cancer 16:413–430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Egea I, Barsan C, Bian W, Purgatto E, Latché A, Chervin C, Bouzayen M, Pech JC (2010) Chromoplast differentiation: current status and perspectives. Plant Cell Physiol 51:1601–1611

    Article  CAS  PubMed  Google Scholar 

  • Emmanuel E, Levy AA (2002) Tomato mutants as tools for functional genomics. Curr Opin Plant Biol 5:112–117

    Article  CAS  PubMed  Google Scholar 

  • Enfissi EM, Nogueira M, Bramley PM, Fraser PD (2017) The regulation of carotenoid formation in tomato fruit. Plant J 89:774–788

    Article  CAS  PubMed  Google Scholar 

  • Fraser PD, Pinto MES, Holloway DE, Bramley PM (2000) Application of high-performance liquid chromatography with photodiode array detection to the metabolic profiling of plant isoprenoids. Plant J 24:551–558

    Article  CAS  PubMed  Google Scholar 

  • Fray RG, Grierson D (1993) Identification and genetic analysis of normal and mutant phytoene synthase genes of tomato by sequencing, complementation and co-suppression. Plant Mol Biol 22:589–602

    Article  CAS  PubMed  Google Scholar 

  • Fulton TM, Chunwongse J, Tanksley SD (1995) Microprep protocol for extraction of DNA from tomato and other herbaceous plants. Plant Mol Biol Rep 13:207–209

    Article  CAS  Google Scholar 

  • Galpaz N, Ronen G, Khalfa Z, Zamir D, Hirschberg J (2006) A chromoplast-specific carotenoid biosynthesis pathway is revealed by cloning of the tomato white-flower locus. Plant Cell 18:1947–1960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galpaz N, Wang Q, Menda N, Zamir D, Hirschberg J (2008) Abscisic acid deficiency in the tomato mutant high-pigment 3 leading to increased plastid number and higher fruit lycopene content. Plant J 53:717–730

    Article  CAS  PubMed  Google Scholar 

  • Gao L, Zhao W, Qu H, Wang Q, Zhao L (2016) The yellow-fruited tomato 1 (yft1) mutant has altered fruit carotenoid accumulation and reduced ethylene production as a result of a genetic lesion in ETHYLENE INSENSITIVE2. Theor Appl Genet 129:717–728

    Article  CAS  PubMed  Google Scholar 

  • Ghorbani R, Poozesh V, Khorramdel S (2012) Tomato production for human health, not only for food. Organic fertilisation, soil quality and human health. Springer, Dordrecht, pp 187–225

    Chapter  Google Scholar 

  • Giovannoni JJ (2007) Fruit ripening mutants yield insights into ripening control. Curr Opin Plant Biol 10:283–289

    Article  CAS  PubMed  Google Scholar 

  • Hannoufa A, Hossain Z (2012) Regulation of carotenoid accumulation in plants. Biocatal Agric Biotechnol 1:198–202

    Article  CAS  Google Scholar 

  • Isaacson T, Ronen G, Zamir D, Hirschberg J (2002) Cloning of tangerine from tomato reveals a carotenoid isomerase essential for the production of β-carotene and xanthophylls in plants. Plant Cell 14:333–342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kachanovsky DE, Filler S, Isaacson T, Hirschberg J (2012) Epistasis in tomato color mutations involves regulation of phytoene synthase 1 expression by cis-carotenoids. Proc Nat Acad Sci USA 109:19021–19026

    Article  PubMed  Google Scholar 

  • Kelemen O, Convertini P, Zhang Z, Wen Y, Shen M, Falaleeva M, Stamm S (2013) Function of alternative splicing. Gene 514:1–30

    Article  CAS  PubMed  Google Scholar 

  • Khachik F, Carvalho L, Bernstein PS, Muir GJ, Zhao D-Y, Katz NB (2002) Chemistry, distribution, and metabolism of tomato carotenoids and their impact on human health. Exp Biol Med 227:845–851

    Article  CAS  Google Scholar 

  • Kilambi HV, Kumar R, Sharma R, Sreelakshmi Y (2013) Chromoplast-specific carotenoid-associated protein appears to be important for enhanced accumulation of carotenoids in hp1 tomato fruits. Plant Physiol 161:2085–2101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kong Y, Zhou H, Yu Y, Chen L, Hao P, Li X (2015) The evolutionary landscape of intergenic trans-splicing events in insects. Nat Commun 6:8734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lanahan MB, Yen HC, Giovannoni JJ, Klee HJ (1994) The never ripe mutation blocks ethylene perception in tomato. Plant Cell 6:521–530

    CAS  PubMed  PubMed Central  Google Scholar 

  • Levin I, Frankel P, Gilboa N, Tanny S, Lalazar A (2003) The tomato dark green mutation is a novel allele of the tomato homolog of the DEETIOLATED1 gene. Theor Appl Genet 106:454–460

    Article  CAS  PubMed  Google Scholar 

  • Li H, Wang J, Mor G, Sklar J (2008) A neoplastic gene fusion mimics trans-splicing of RNAs in normal human cells. Science 321:1357–1361

    Article  CAS  PubMed  Google Scholar 

  • Lieberman M, Segev O, Gilboa N, Lalazar A, Levin I (2004) The tomato homolog of the gene encoding UV-damaged DNA binding protein 1 (DDB1) underlined as the gene that causes the high pigment-1 mutant phenotype. Theor Appl Genet 108:1574–1581

    Article  CAS  PubMed  Google Scholar 

  • Lin T, Zhu G, Zhang J, Xu X, Yu Q, Zheng Z, Zhang Z, Lun Y, Li S, Wang X et al (2014) Genomic analyses provide insights into the history of tomato breeding. Nat Genet 46:1220–1226

    Article  CAS  PubMed  Google Scholar 

  • Manning K, Tör M, Poole M, Hong Y, Thompson AJ, King GJ, Giovannoni JJ, Seymour GB (2006) A naturally occurring epigenetic mutation in a gene encoding an SBP-box transcription factor inhibits tomato fruit ripening. Nat Genet 38:948–952

    Article  CAS  PubMed  Google Scholar 

  • Mao J, Zhang YC, Sang Y, Li QH, Yang HQ (2005) A role for Arabidopsis cryptochromes and COP1 in the regulation of stomatal opening. Proc Nat Acad Sci USA 102:12270–12275

    Article  CAS  PubMed  Google Scholar 

  • Mustilli AC, Fenzi F, Ciliento R, Alfano F, Bowler C (1999) Phenotype of the tomato high pigment-2 mutant is caused by a mutation in the tomato homolog of DEETIOLATED1. Plant Cell 11:145–157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ray J, Moureau P, Bird C, Bird A, Grierson D, Maunders M, Truesdale M, Bramley P, Schuch W (1992) Cloning and characterization of a gene involved in phytoene synthesis from tomato. Plant Mol Biol 19:401–404

    Article  CAS  PubMed  Google Scholar 

  • Ronen G, Cohen M, Zamir D, Hirschberg J (1999) Regulation of carotenoid biosynthesis during tomato fruit development: expression of the gene for lycopene epsilon-cyclase is down-regulated during ripening and is elevated in the mutant Delta. Plant J 17:341–351

    Article  CAS  PubMed  Google Scholar 

  • Ronen G, Carmel-Goren L, Zamir D, Hirschberg J (2000) An alternative pathway to β-carotene formation in plant chromoplasts discovered by map-based cloning of Beta and old-gold color mutations in tomato. Proc Nat Acad Sci USA 97:11102–11107

    Article  CAS  PubMed  Google Scholar 

  • Rosati C, Aquilani R, Dharmapuri S, Pallara P, Marusic C, Tavazza R, Bouvier F, Camara B, Giuliano G (2000) Metabolic engineering of beta-carotene and lycopene content in tomato fruit. Plant J 24:413–420

    Article  CAS  PubMed  Google Scholar 

  • Sato S, Tabata S, Hirakawa H, Asamizu E, Shirasawa K, Isobe S, Kaneko T, Nakamura Y, Shibata D, Aoki K et al (2012) The tomato genome sequence provides insights into fleshy fruit evolution. Nature 485:635–641

    Article  CAS  Google Scholar 

  • Shinozaki Y, Nicolas P, Fernandez-Pozo N, Ma Q, Evanich DJ, Shi Y, Xu Y, Zheng Y, Snyder SI, Martin LB et al (2018) High-resolution spatiotemporal transcriptome mapping of tomato fruit development and ripening. Nat Commun 9:364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spooner DM, Peralta IE, Knapp S (2005) Comparison of AFLPs with other markers for phylogenetic inference in wild tomatoes [Solanum L. section Lycopersicon (Mill.) Wettst.]. Taxon 54:43–61

    Article  Google Scholar 

  • Tan H-L, Thomas-Ahner JM, Moran NE, Cooperstone JL, Erdman JW, Young GS, Clinton SK (2017) β-carotene 9′, 10′ oxygenase modulates the anticancer activity of dietary tomato or lycopene on prostate carcinogenesis in the TRAMP model. Cancer Prev Res 10:161–169

    Article  CAS  Google Scholar 

  • Tanaka T, Shnimizu M, Moriwaki H (2012) Cancer chemoprevention by carotenoids. Molecules 17:3202–3242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanksley SD (2004) The genetic, developmental, and molecular bases of fruit size and shape variation in tomato. Plant Cell 16:S181–S189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tieman D, Zhu G, Resende MF, Lin T, Nguyen C, Bies D, Rambla JL, Beltran KSO, Taylor M, Zhang B et al (2017) A chemical genetic roadmap to improved tomato flavor. Science 355:391–394

    Article  CAS  PubMed  Google Scholar 

  • Vrebalov J, Ruezinsky D, Padmanabhan V, White R, Medrano D, Drake R, Schuch W, Giovannoni J (2002) A MADS-box gene necessary for fruit ripening at the tomato ripening-inhibitor (rin) locus. Science 296:343–346

    Article  CAS  PubMed  Google Scholar 

  • Weigel D, Glazebrook J (2006) Transformation of Agrobacterium using the freeze-thaw method. Cold Spring Harb Protoc 2006:1031–1036

    Google Scholar 

  • Zhang H, Zhao L, Chen Y, Cui L, Ren W, Tang K (2007) Expression of human coagulation Factor IX in transgenic tomato (Lycopersicon esculentum). Biotechnol Appl Biochem 48:101–107

    Article  CAS  PubMed  Google Scholar 

  • Zhu M, Chen G, Zhou S, Tu Y, Wang Y, Dong T, Hu Z (2013) A new tomato NAC (NAM/ATAF1/2/CUC2) transcription factor, SlNAC4, functions as a positive regulator of fruit ripening and carotenoid accumulation. Plant Cell Physiol 55:119–135

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Dr. Dani Zamir and the TGRC (Tomato Genetic Resource Center, UC, Davis) for providing tomato seeds. We thank Dr. Pin Liu (Plant Biotechnology Research Center, School of Agriculture and Biology, Shanghai Jiao Tong University) for help with the carotenoid analysis. We thank PlantScribe (www.plantscribe.com) for editing this manuscript. This work was supported by a National Key Research and Development Project [2016YFD0100204-28]; the National Natural Science Foundation of China [31672158, 31872112]; the Key Technology Research and the Development Program of Shanghai Technology Committee [16391900900] and the Shanghai Jiao Tong University Agri-X Fund (2015).

Author information

Authors and Affiliations

Authors

Contributions

LXZ conceived and designed the research, and wrote the manuscript. LLC performed the main experimental work and wrote the manuscript; WZL and YPL participated in the mapping; XCF and KYD conducted HPLC analysis; GW participated in the ultrastructural analysis.

Corresponding author

Correspondence to Lingxia Zhao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Li, W., Li, Y. et al. Identified trans-splicing of YELLOW-FRUITED TOMATO 2 encoding the PHYTOENE SYNTHASE 1 protein alters fruit color by map-based cloning, functional complementation and RACE. Plant Mol Biol 100, 647–658 (2019). https://doi.org/10.1007/s11103-019-00886-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-019-00886-y

Keywords

Navigation