Skip to main content
Log in

CYP71Z18 overexpression confers elevated blast resistance in transgenic rice

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Key message

CYP71Z18 exhibited plastic substrate specificity to catalyze oxidation of multiple rice diterpenes and elevated chemical defense against the blast fungus in transgenic rice.

Abstract

Diversified plant specialized metabolism relies on corresponding biosynthetic enzymes with differential substrate specificity. CYP71Z18 catalyzed formation of maize phytoalexins including zealexin A1, the sesquiterpenoid phytoalexin, and diterpenoid phytoalexin dolabralexin, indicating catalytic promiscuity on different terpene substrates. Here substrate specificity of CYP71Z18 was further explored through microbial metabolic engineering and it was identified to accept multiple rice diterpenes as substrates for oxidation. One CYP71Z18 enzymatic product derived from syn-pimaradiene was identified as 15,16-epoxy-syn-pimaradiene by NMR analysis, which was further elaborated by CYP99A3 to generate C19 hydroxylated product. 15,16-epoxy-syn-pimaradien-19-ol exhibited inhibitory effect on spore germination and appressorium formation of the blast pathogen Magnaporthe oryzae. Overexpression of CYP71Z18 in rice resulted in accumulation of several new diterpenoids, indicating promiscuous activity in planta. Transgenic rice also showed stronger resistance against M. oryzae infection, suggesting elevated chemical defense through changed diterpenoid metabolism by CYP71Z18 overexpression. This investigation sheds light on plant metabolic engineering using plastic substrate specificity of P450s to strengthen disease resistance and potentially provide abundant lead compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ahuja I, Kissen R, Bones AM (2012) Phytoalexins in defense against pathogens. Trends Plant Sci 17(2):73–90

    Article  CAS  Google Scholar 

  • Cho EM et al (2004) Molecular cloning and characterization of a cDNA encoding ent-cassa-12,15-diene synthase, a putative diterpenoid phytoalexin biosynthetic enzyme, from suspension-cultured rice cells treated with a chitin elicitor. Plant J 37(1):1–8

    Article  CAS  PubMed  Google Scholar 

  • Cyr A, Wilderman PR, Determan M, Peters RJ (2007) A modular approach for facile biosynthesis of labdane-related diterpenes. J Am Chem Soc 129(21):6684–6685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Luca V, Salim V, Atsumi SM, Yu F (2012) Mining the biodiversity of plants: a revolution in the making. Science 336(6089):1658–1661

    Article  CAS  PubMed  Google Scholar 

  • Fu J, Ren F, Lu X, Mao H, Xu M, Degenhardt J, Peters RJ, Wang Q (2016) A tandem array of ent-kaurene synthases in maize with roles in gibberellin and more specialized metabolism. Plant Physiol 170(2):742–751

    Article  CAS  PubMed  Google Scholar 

  • Hamberger B, Bak S (2013) Plant P450 s as versatile drivers for evolution of species-specific chemical diversity. Philos Trans R Soc Lond B 368(1612):20120426

    Article  CAS  Google Scholar 

  • Huffaker A et al (2011) Novel acidic sesquiterpenoids constitute a dominant class of pathogen-induced phytoalexins in maize. Plant Physiol 156(4):2082–2097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kitaoka N, Wu YS, Xu MM, Peters RJ (2015) Optimization of recombinant expression enables discovery of novel cytochrome P450 activity in rice diterpenoid biosynthesis. Appl Microbiol Biotechnol 99(18):7549–7558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kollner TG, Schnee C, Li S, Svatos A, Schneider B, Gershenzon J, Degenhardt J (2008) Protonation of a neutral (S)-beta-bisabolene intermediate is involved in (S)-beta-macrocarpene formation by the maize sesquiterpene synthases TPS6 and TPS11. J Biol Chem 283(30):20779–20788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li W et al (2017) A natural allele of a transcription factor in rice confers broad-spectrum blast resistance. Cell 170(1):114–126

    Article  CAS  PubMed  Google Scholar 

  • Mafu S, Jia M, Zi J, Morrone D, Wu Y, Xu M, Hillwig ML, Peters RJ (2016) Probing the promiscuity of ent-kaurene oxidases via combinatorial biosynthesis. Proc Natl Acad Sci USA 113(9):2526–2531

    Article  CAS  PubMed  Google Scholar 

  • Mafu S et al (2018) Discovery, biosynthesis and stress-related accumulation of dolabradiene-derived defenses in maize. Plant Physiol 176(4):2677–2690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mao H, Liu J, Ren F, Peters RJ, Wang Q (2016) Characterization of CYP71Z18 indicates a role in maize zealexin biosynthesis. Phytochemistry 121:4–10

    Article  CAS  PubMed  Google Scholar 

  • Mao H, Shen Q, Wang Q (2017) CYP701A26 is characterized as an ent-kaurene oxidase with putative involvement in maize gibberellin biosynthesis. Biotechnol Lett 39(11):1709–1716

    Article  CAS  PubMed  Google Scholar 

  • Morant M, Bak S, Moller BL, Werck-Reichhart D (2003) Plant cytochromes P450: tools for pharmacology, plant protection and phytoremediation. Curr Opin Biotechnol 14(2):151–162

    Article  CAS  PubMed  Google Scholar 

  • Morrone D, Lowry L, Determan MK, Hershey DM, Xu M, Peters RJ (2010) Increasing diterpene yield with a modular metabolic engineering system in E. coli: comparison of MEV and MEP isoprenoid precursor pathway engineering. Appl Microbiol Biotechnol 85(6):1893–1906

    Article  CAS  PubMed  Google Scholar 

  • Otomo K et al (2004a) Biological functions of ent- and syn-copalyl diphosphate synthases in rice: key enzymes for the branch point of gibberellin and phytoalexin biosynthesis. Plant J 39(6):886–893

    Article  CAS  PubMed  Google Scholar 

  • Otomo K et al (2004b) Diterpene cyclases responsible for the biosynthesis of phytoalexins, momilactones A, B, and oryzalexins A-F in rice. Biosci Biotechnol Biochem 68(9):2001–2006

    Article  CAS  PubMed  Google Scholar 

  • Pateraki I, Heskes AM, Hamberger B (2015) Cytochromes P450 for terpene functionalisation and metabolic engineering. Adv Biochem Eng Biot 148:107–139

    CAS  Google Scholar 

  • Peters RJ (2006) Uncovering the complex metabolic network underlying diterpenoid phytoalexin biosynthesis in rice and other cereal crop plants. Phytochemistry 67(21):2307–2317

    Article  CAS  PubMed  Google Scholar 

  • Prisic S, Xu M, Wilderman PR, Peters RJ (2004) Rice contains two disparate ent-copalyl diphosphate synthases with distinct metabolic functions. Plant Physiol 136(4):4228–4236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Renault H, Bassard J-E, Hamberger B, Werck-Reichhart D (2014) Cytochrome P450-mediated metabolic engineering: current progress and future challenges. Curr Opin Plant Biol 19:27–34

    Article  CAS  PubMed  Google Scholar 

  • Schmelz EA et al (2011) Identity, regulation, and activity of inducible diterpenoid phytoalexins in maize. Proc Natl Acad Sci USA 108(13):5455–5460

    Article  PubMed  Google Scholar 

  • Schmelz EA, Huffaker A, Sims JW, Christensen SA, Lu X, Okada K, Peters RJ (2014) Biosynthesis, elicitation and roles of monocot terpenoid phytoalexins. Plant J 79(4):659–678

    Article  CAS  PubMed  Google Scholar 

  • Swaminathan S, Morrone D, Wang Q, Fulton DB, Peters RJ (2009) CYP76M7 is an ent-cassadiene C11α-hydroxylase defining a second multifunctional diterpenoid biosynthetic gene cluster in rice. Plant Cell 21(10):3315–3325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Q, Hillwig ML, Peters RJ (2011) CYP99A3: functional identification of a diterpene oxidase from the momilactone biosynthetic gene cluster in rice. Plant J 65(1):87–95

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Hillwig ML, Okada K, Yamazaki K, Wu Y, Swaminathan S, Yamane H, Peters RJ (2012a) Characterization of CYP76M5-8 indicates metabolic plasticity within a plant biosynthetic gene cluster. J Biol Chem 287(9):6159–6168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Q, Hillwig ML, Wu Y, Peters RJ (2012b) CYP701A8: a rice ent-kaurene oxidase paralog diverted to more specialized diterpenoid metabolism. Plant Physiol 158(3):1418–1425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weng JK, Philippe RN, Noel JP (2012) The rise of chemodiversity in plants. Science 336(6089):1667–1670

    Article  CAS  PubMed  Google Scholar 

  • Wilderman PR, Xu M, Jin Y, Coates RM, Peters RJ (2004) Identification of syn-pimara-7,15-diene synthase reveals functional clustering of terpene synthases involved in rice phytoalexin/allelochemical biosynthesis. Plant Physiol 135(4):2098–2105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu Y, Hillwig ML, Wang Q, Peters RJ (2011) Parsing a multifunctional biosynthetic gene cluster from rice: biochemical characterization of CYP71Z6 & 7. FEBS Lett 585(21):3446–3451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu Y, Wang Q, Hillwig ML, Peters RJ (2013) Picking sides: distinct roles for CYP76M6 and CYP76M8 in rice oryzalexin biosynthesis. Biochem J 454(2):209–216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu M, Hillwig ML, Prisic S, Coates RM, Peters RJ (2004) Functional identification of rice syn-copalyl diphosphate synthase and its role in initiating biosynthesis of diterpenoid phytoalexin/allelopathic natural products. Plant J 39(3):309–318

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the funds of 1000-Talent Program of Sichuan Province to QW..

Author information

Authors and Affiliations

Authors

Contributions

QW designed research. QS, QP, JL and HM performed experiments under supervision of QW. JL analyzed NMR data and elucidated chemical structures. QS and QW analyzed all data and wrote the paper with the help of JL.

Corresponding author

Correspondence to Qiang Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 265 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, Q., Pu, Q., Liang, J. et al. CYP71Z18 overexpression confers elevated blast resistance in transgenic rice. Plant Mol Biol 100, 579–589 (2019). https://doi.org/10.1007/s11103-019-00881-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-019-00881-3

Keywords

Navigation