Skip to main content
Log in

Increased fes1a thermotolerance is induced by BAG6 knockout

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Key message

(1) The fes1a bag6 double mutant shows an increased short term thermotolerance compared to fes1a. BAG6 is a suppressor of Fes1A; (2) IQ motif is essential to effective performance of BAG6. (3) Calmodulin was involved in signal transduction. (4) BAG6 is localized in the nucleus.

Abstract

HSP70s play an important role in the heat-induced stress tolerance of plants. However, effective HSP70 function requires the assistance of many co-chaperones. BAG6 and Fes1A are HSP70-binding proteins that are critical for Arabidopsis thaliana thermotolerance. Despite this importance, little is known about how these co-chaperones interact. In this study, we assessed the thermotolerance of a fes1a bag6 double mutant. We found that the fes1a bag6 double mutant shows an increased short-term thermotolerance compared to fes1a. However, calmodulin inhibitors diminished this enhanced thermotolerance in the fes1a bag6 double mutant. In addition, we found the IQ motif to be essential for effective BAG6 performance. Since BAG6 is localized in the nucleus, the signal transduction is likely to involve nuclear calcium signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alberti S, Böhse K, Arndt V, Schmitz A, Höhfeld J (2004) The cochaperone HspBP1 inhibits the CHIP ubiquitin ligase and stimulates the maturation of the cystic fibrosis transmembrane conductance regulator. Mol Biol Cell 15:4003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burstenbinder K, Moller B, Plotner R, Stamm G, Hause G, Mitra D, Abel S (2017) The IQD family of calmodulin-binding proteins links calcium signaling to microtubules, membrane subdomains, and the nucleus. Plant Physiol 173:1692–1708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Calikowski TT, Meulia T, Meier I (2003) A proteomic study of the arabidopsis nuclear matrix. J Cell Biochem 90:361–378

    Article  CAS  PubMed  Google Scholar 

  • Charpentier M, Oldroyd GE (2013) Nuclear calcium signaling in plants. Plant Physiol 163:496–503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dat JF, Lopez-Delgado H, Foyer CH, Scott IM (1998) Parallel changes in H2O2 and catalase during thermotolerance induced by salicylic acid or heat acclimation in mustard seedlings. Plant Physiol 116:1351–1357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doukhanina EV, Chen S, van der Zalm E, Godzik A, Reed J, Dickman MB (2006) Identification and functional characterization of the BAG protein family in Arabidopsis thaliana. J Biol Chem 281:18793–18801

    Article  CAS  PubMed  Google Scholar 

  • Echevarría-Zomeño S, Fernández-Calvino L, Castro-Sanz AB, López JA, Vázquez J, Castellano MM (2016) Dissecting the proteome dynamics of the early heat stress response leading to plant survival or death in Arabidopsis. Plant Cell Environ 39:1264–1278

    Article  CAS  PubMed  Google Scholar 

  • Fu C, Zhang J, Liu X, Yang W, Yu H, Liu J (2015) AtFes1A is essential for highly efficient molecular chaperone function in Arabidopsis. J Plant Biol 58:366–373

    Article  CAS  Google Scholar 

  • Fu S, Li L, Kang H, Yang X, Men S, Shen Y (2017) Chronic mitochondrial calcium elevation suppresses leaf senescence. Biochem Biophys Res Commun 487:672–677

    Article  CAS  PubMed  Google Scholar 

  • Inze A, Vanderauwera S, Hoeberichts FA, Vandorpe M, Van Gaever T, Van Breusegem F (2012) A subcellular localization compendium of hydrogen peroxide-induced proteins. Plant Cell Environ 35:308–320

    Article  CAS  PubMed  Google Scholar 

  • Jungkunz I, Link K, Vogel F, Voll LM, Sonnewald S, Sonnewald U (2011) AtHsp70-15-deficient Arabidopsis plants are characterized by reduced growth, a constitutive cytosolic protein response and enhanced resistance to TuMV. Plant J 66:983–995

    Article  CAS  PubMed  Google Scholar 

  • Kabbage M, Dickman MB (2008) The BAG proteins: a ubiquitous family of chaperone regulators. Cell Mol Life Sci 65:1390–1402

    Article  CAS  PubMed  Google Scholar 

  • Kang CH, Jung WY, Kang YH, Kim JY, Kim DG, Jeong JC, Baek DW, Jin JB, Lee JY, Kim MO, Chung WS, Mengiste T, Koiwa H, Kwak SS, Bahk JD, Lee SY, Nam JS, Yun DJ, Cho MJ (2006) AtBAG6, a novel calmodulin-binding protein, induces programmed cell death in yeast and plants. Cell Death Differ 13:84–95

    Article  CAS  PubMed  Google Scholar 

  • Kityk R, Kopp J, Sinning I, Mayer MP (2012) Structure and dynamics of the ATP-bound open conformation of Hsp70 chaperones. Mol Cell 48:863–874

    Article  CAS  PubMed  Google Scholar 

  • Larkindale J, Knight MR (2002) Protection against heat stress-induced oxidative damage in Arabidopsis involves calcium, abscisic acid, ethylene, and salicylic acid. Plant Physiol 128:682–695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee JH, Schöffl F (1996) An Hsp70 antisense gene affects the expression of HSP70/HSC70, the regulation of HSF, and the acquisition of thermotolerance in transgenic Arabidopsis thaliana. Mol Gen Genet 252:11–19

    CAS  PubMed  Google Scholar 

  • Lee DW, Kim SJ, Oh YJ, Choi B, Lee J, Hwang I (2016) Arabidopsis BAG1 functions as a cofactor in Hsc70-mediated proteasomal degradation of unimported plastid proteins. Mol Plant 9:1428–1431

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Dickman M (2016) Processing of AtBAG6 triggers autophagy and fungal resistance. Plant Signal Behav 11:e1175699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li L, Xing Y, Chang D, Fang S, Cui B, Li Q, Wang X, Guo S, Yang X, Men S, Shen Y (2016) CaM/BAG5/Hsc70 signaling complex dynamically regulates leaf senescence. Sci Rep 6:31889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Kabbage M, Liu W, Dickman MB (2017a) Aspartyl protease-mediated cleavage of BAG6 is necessary for autophagy and fungal resistance in plants. Plant Cell 28:233–247

    Article  Google Scholar 

  • Li Y, Williams B, Dickman M (2017b) Arabidopsis B-cell lymphoma2 (Bcl-2)-associated athanogene 7 (BAG7)-mediated heat tolerance requires translocation, sumoylation and binding to WRKY29. New Phytol 214:695–705

    Article  CAS  PubMed  Google Scholar 

  • Liu HT, Gao F, Li GL, Han JL, Liu DL, Sun DY, Zhou RG (2008) The calmodulin-binding protein kinase 3 is part of heat-shock signal transduction in Arabidopsis thaliana. Plant J 55:760–773

    Article  CAS  PubMed  Google Scholar 

  • Mayer MP (2013) Hsp70 chaperone dynamics and molecular mechanism. Trends Biochem Sci 38:507–514

    Article  CAS  PubMed  Google Scholar 

  • Mohanta TK, Kumar P, Bae H (2017) Genomics and evolutionary aspect of calcium signaling event in calmodulin and calmodulin-like proteins in plants. BMC Plant Biol 17:38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noel LD, Cagna G, Stuttmann J, Wirthmuller L, Betsuyaku S, Witte CP, Bhat R, Pochon N, Colby T, Parker JE (2007) Interaction between SGT1 and cytosolic/nuclear HSC70 chaperones regulates Arabidopsis immune responses. Plant Cell 19:4061–4076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sangwan V, Orvar BL, Beyerly J, Hirt H, Dhindsa RS (2002) Opposite changes in membrane fluidity mimic cold and heat stress activation of distinct plant MAP kinase pathways. Plant J 31:629–638

    Article  CAS  PubMed  Google Scholar 

  • Shomura Y, Dragovic Z, Chang HC, Tzvetkov N, Young JC, Brodsky JL, Guerriero V, Hartl FU, Bracher A (2005) Regulation of Hsp70 function by HspBP1: structural analysis reveals an alternate mechanism for Hsp70 nucleotide exchange. Mol Cell 17:367–379

    CAS  PubMed  Google Scholar 

  • Sung DY, Guy CL (2003) Physiological and molecular assessment of altered expression of Hsc70-1 in Arabidopsis. Evidence for pleiotropic consequences. Plant Physiol 132:979–987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vera-Estrella R, Barkla BJ, Liliana García-Ramírez L, Pantoja O (2005) Salt stress in Thellungiella halophila activates Na+ transport mechanisms required for salinity tolerance. Plant Physiol 139:1507–1517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vierling E (1991) The roles of heat shock proteins in plants. Annu Rev Plant Physiol Plant Mol Biol 42:579–620

    Article  CAS  Google Scholar 

  • Williams B, Kabbage M, Britt R, Dickman MB (2010) AtBAG7, an Arabidopsis Bcl-2-associated athanogene, resides in the endoplasmic reticulum and is involved in the unfolded protein response. Proc Natl Acad Sci USA 107:6088–6093

    Article  PubMed  Google Scholar 

  • Wu HC, Luo DL, Vignols F, Jinn TL (2012) Heat shock-induced biphasic Ca(2+) signature and OsCaM1-1 nuclear localization mediate downstream signalling in acquisition of thermotolerance in rice (Oryza sativa L.). Plant Cell Environ 35:1543–1557

    Article  CAS  Google Scholar 

  • Yi SY, Sun AQ, Sun Y, Yang JY, Zhao CM, Liu J (2006) Differential regulation of Lehsp23.8 in tomato plants: analysis of a multiple stress-inducible promoter. Plant Sci 171:398–407

    Article  CAS  PubMed  Google Scholar 

  • Zeng H, Xu L, Singh A, Wang H, Du L, Poovaiah BW (2015) Involvement of calmodulin and calmodulin-like proteins in plant responses to abiotic stresses. Front Plant Sci 6:600

    PubMed  PubMed Central  Google Scholar 

  • Zhang W, Zhou RG, Gao YJ, Zheng SZ, Xu P, Zhang SQ, Sun DY (2009) Molecular and genetic evidence for the key role of AtCaM3 in heat-shock signal transduction in Arabidopsis. Plant Physiol 149:1773–1784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang JX, Wang C, Yang CY, Wang JY, Chen L, Bao XM, Zhao YX, Zhang H, Liu J (2010) The role of Arabidopsis AtFes1A in cytosolic Hsp70 stability and abiotic stress tolerance. Plant J 62:539–548

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The National Natural Science Foundation of China (Grant No. 31270298) and Research Fundamental Capacity Improvement Project for Middle Age and Youth Teachers of Guangxi Universities (Grant No. 2019KY0517) supported this study.

Author information

Authors and Affiliations

Authors

Contributions

CF carried out the experiment with YH, LZ, XL, and PH, and wrote the main manuscript text. YH and JG supplemented the experiments that the reviewers suggested to improve the manuscript. JL designed and supervised the research and revised the manuscript. All authors reviewed the manuscript.

Corresponding author

Correspondence to Jian Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 36265 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, C., Hou, Y., Ge, J. et al. Increased fes1a thermotolerance is induced by BAG6 knockout. Plant Mol Biol 100, 73–82 (2019). https://doi.org/10.1007/s11103-019-00844-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-019-00844-8

Keywords

Navigation