Skip to main content
Log in

A set of GFP-based organelle marker lines combined with DsRed-based gateway vectors for subcellular localization study in rice (Oryza sativa L.)

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

In the post-genomic era, many useful tools have been developed to accelerate the investigation of gene functions. Fluorescent proteins have been widely used as protein tags for studying the subcellular localization of proteins in plants. Several fluorescent organelle marker lines have been generated in dicot plants; however, useful and reliable fluorescent organelle marker lines are lacking in the monocot model rice. Here, we developed eight different GFP-based organelle markers in transgenic rice and created a set of DsRed-based gateway vectors for combining with the marker lines. Two mitochondrial-localized rice ascorbate peroxidase genes fused to DsRed and successfully co-localized with mitochondrial-targeted marker lines verified the practical use of this system. The co-localization of GFP-fusion marker lines and DsRed-fusion proteins provide a convenient platform for in vivo or in vitro analysis of subcellular localization of rice proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bashir K, Ishimaru Y, Shimo H, Nagasaka S, Fujimoto M, Takanashi H, Tsutsumi N, An G, Nakanishi H, Nishizawa NK (2011) The rice mitochondrial iron transporter is essential for plant growth. Nat Commun 2:322

    Article  PubMed  PubMed Central  Google Scholar 

  • Blobel G (1980) Intracellular protein topogenesis. Proc Natl Acad Sci USA 77:1496–1500

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Burkhart SE, Kao YT, Bartel B (2014) Peroxisomal ubiquitin-protein ligases Peroxin2 and Peroxin10 have distinct but synergistic roles in matrix protein import and Peroxin5 retrotranslocation in Arabidopsis. Plant Physiol 166:1329–1344

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Chan MT, Chao YC, Yu SM (1994) Novel gene expression system for plant cells based on induction of α-amylase promoter by carbohydrate starvation. J Biol Chem 269:17635–17641

    PubMed  CAS  Google Scholar 

  • Christensen AH, Quail PH (1996) Ubiquitin promoter-based vectors for high-level expression of selectable and/or screenable marker genes in monocotyledonous plants. Transgenic Res 5:213–218

    Article  PubMed  CAS  Google Scholar 

  • Cody CW, Prasher DC, Westler WM, Prendergast FG, Ward WW (1993) Chemical structure of the hexapeptide chromophore of the Aequorea green-fluorescent protein. Biochemistry 32:1212–1218

    Article  PubMed  CAS  Google Scholar 

  • Collings DA (2013) Subcellular localization of transiently expressed fluorescent fusion proteins. Methods Mol Biol 1069:227–258

    Article  PubMed  CAS  Google Scholar 

  • Cope M, Pratt LH (1992) Intracellular redistribution of phytochrome in etiolated soybean (Glycine max L.) seedlings. Planta 188:115–122

    Article  PubMed  CAS  Google Scholar 

  • Geldner N, Denervaud-Tendon V, Hyman DL, Mayer U, Stierhof YD, Chory J (2009) Rapid, combinatorial analysis of membrane compartments in intact plants with a multicolor marker set. Plant J 59:169–178

    Article  PubMed  CAS  Google Scholar 

  • Gomord V, Denmat LA, Fitchette-Laine AC, Satiat-Jeunemaitre B, Hawes C, Faye L (1997) The C-terminal HDEL sequence is sufficient for retention of secretory proteins in the endoplasmic reticulum (ER) but promotes vacuolar targeting of proteins that escape the ER. Plant J 11:313–325

    Article  PubMed  CAS  Google Scholar 

  • Hattori Y, Nagai K, Furukawa S, Song X-J, Kawano R, Sakakibara H, Wu J, Matsumoto T, Yoshimura A, Kitano H, Matsuoka M, Mori H, Ashikari M (2009) The ethylene response factors SNORKEL1 and SNORKEL2 allow rice to adapt to deep water. Nature 460:1026–1030

    Article  PubMed  CAS  Google Scholar 

  • Hong CY, Cheng KJ, Tseng TH, Wang CS, Liu LF, Yu SM (2004) Production of two highly active bacterial phytases with broad pH optima in germinated transgenic rice seeds. Transgenic Res 13:29–33

    Article  PubMed  CAS  Google Scholar 

  • Hood EE, Helmer GL, Fraley RT, Chilton MD (1986) The hypervirulence of Agrobacterium tumefaciens A281 is encoded in a region of pTiBo542 outside of T-DNA. J Bacteriol 168:1291–1301

    PubMed  CAS  PubMed Central  Google Scholar 

  • Horn PJ, Chapman KD (2012) Lipidomics in tissues, cells and subcellular compartments. Plant J 70:69–80

    Article  PubMed  CAS  Google Scholar 

  • Huang CK, Yu SM, Lu CA (2010) A rice DEAD-box protein, OsRH36, can complement an Arabidopsis atrh36 mutant, but cannot functionally replace its yeast homolog Dbp8p. Plant Mol Biol 74:119–128

    Article  PubMed  CAS  Google Scholar 

  • Huang YC, Huang WL, Hong CY, Lur HS, Chang MC (2012) Comprehensive analysis of differentially expressed rice actin depolymerizing factor gene family and heterologous overexpression of OsADF3 confers Arabidopsis thaliana drought tolerance. Rice 5:33

    Article  PubMed  Google Scholar 

  • Huh WK, Falvo JV, Gerke LC, Carroll AS, Howson RW, Weissman JS, O’Shea EK (2003) Global analysis of protein localization in budding yeast. Nature 425:686–691

    Article  PubMed  CAS  Google Scholar 

  • Huq E, Al-Sady B, Quail PH (2003) Nuclear translocation of the photoreceptor phytochrome B is necessary for its biological function in seedling photomorphogenesis. Plant J 35:660–664

    Article  PubMed  CAS  Google Scholar 

  • Kim DH, Xu ZY, Hwang I (2013) Generation of transgenic Arabidopsis plants expressing mCherry-fused organelle marker proteins. J Plant Biol 56:399–406

    Article  CAS  Google Scholar 

  • Kokkirala VR, Peng Y, Abbagani S, Zhen Z, Umate P (2010) Subcellular localization of proteins of Oryza sativa L. in the model tobacco and tomato plants. Plant Signal Behav 5:1336–1341

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Krishnakumar V, Choi Y, Beck E, Wu Q, Luo A, Sylvester A, Jackson D, Chan AP (2015) A maize database resource that captures tissue-specific and subcellular-localized gene expression, via fluorescent tags and confocal imaging (Maize Cell Genomics Database). Plant Cell Physiol 56:e12. doi:10.1093/pcp/pcu178 Epub 2014 Nov 27

    Article  PubMed  Google Scholar 

  • Kubo N, Arimura S, Tsutsumi N, Hirai A, Kadowaki K (2003) Involvement of N-terminal region in mitochondrial targeting of rice RPS10 and RPS14 proteins. Plant Sci 164:1047–1055

    Article  CAS  Google Scholar 

  • Kumar A, Agarwal S, Heyman JA, Matson S, Heidtman M, Piccirillo S, Umansky L, Drawid A, Jansen R, Liu Y, Cheung K-H, Miller P, Gerstein MB, Roeder GS, Snyder M (2002) Subcellular localization of the yeast proteome. Genes Dev 16:707–719

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Li N, Zhang DS, Liu HS, Yin CS, Li XX, Liang WQ, Yuan Z, Xu B, Chu HW, Wang J, Wen TQ, Huang H, Luo D, Ma H, Zhang DB (2006) The rice tapetum degeneration retardation gene is required for tapetum degradation and anther development. Plant Cell 18:2999–3014

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Luo B, Nakata PA (2012) A set of GFP organelle marker lines for intracellular localization studies in Medicago truncatula. Plant Sci 188–189:19–24

    Article  PubMed  Google Scholar 

  • Marion J, Bach L, Bellec Y, Meyer C, Gissot L, Faure JD (2008) Systematic analysis of protein subcellular localization and interaction using high-throughput transient transformation of Arabidopsis seedlings. Plant J 56:169–179

    Article  PubMed  CAS  Google Scholar 

  • McCurdy DW, Pratt LH (1986) Kinetics of intracellular redistribution of phytochrome in Avena coleoptiles after its photoconversion to the active, far-red-absorbing form. Planta 167:330–336

    Article  PubMed  CAS  Google Scholar 

  • Meng W, Hsiao AS, Gao C, Jiang L, Chye ML (2014) Subcellular localization of rice acyl-CoA-binding proteins (ACBPs) indicates that OsACBP6:GFP is targeted to the Peroxisomes. New Phytol 203:469–482

    Article  PubMed  CAS  Google Scholar 

  • Millar AH, Carrie C, Pogson B, Whelan J (2009) Exploring the function-location nexus: using multiple lines of evidence in defining the subcellular location of plant proteins. Plant Cell 21:1625–1631

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Nebenführ A, Gallagher L, Dunahay TG, Frohlick JA, Masurkiewicz AM, Meehl JB, Staehelin LA (1999) Stop-and-go movements of plant Golgi stacks are mediated by the acto-myosin system. Plant Physiol 121:1127–1141

    Article  PubMed  PubMed Central  Google Scholar 

  • Nelson BK, Cai X, Nebenfuhr A (2007) A multicolored set of in vivo organelle markers for co-localization studies in Arabidopsis and other plants. Plant J 51:1126–1136

    Article  PubMed  CAS  Google Scholar 

  • Nikolovski N, Shliaha PV, Gatto L, Dupree P, Lilley KS (2014) Label-free protein quantification for plant Golgi protein localization and abundance. Plant Physiol 166:1033–1043

    Article  PubMed  PubMed Central  Google Scholar 

  • Shi CC, Feng CC, Yang MM, Li JL, Li XX, Zhao BC, Huang ZJ, Ge RC (2014) Overexpression of the receptor-like protein kinase genes AtRPK1 and OsRPK1 reduces the salt tolerance of Arabidopsis thaliana. Plant Sci 217–218:63–70

    Article  PubMed  Google Scholar 

  • Tanz SK, Castleden I, Small ID, Millar AH (2013) Fluorescent protein tagging as a tool to define the subcellular distribution of proteins in plants. Front Plant Sci 4:1–9

    Article  Google Scholar 

  • Teixeira FK, Menezes-Benzvente L, Margis R, Margis-Pinheiro M (2004) Analysis of the molecular evolutionary history of the ascorbate peroxidase gene family: inferences from the rice genome. J Mol Evol 59:761–770

    Article  PubMed  CAS  Google Scholar 

  • Teixeira FK, Menezes-Benzvente L, Galvão VC, Margis R, Margis-Pinheiro M (2006) Rice ascorbate peroxidase gene family encodes functionally diverse isoforms localized in different subcellular compartments. Planta 224:300–314

    Article  PubMed  CAS  Google Scholar 

  • Trelease RN, Lee MS, Banjoko A, Bunkelmann J (1996) C-terminal polypeptides are necessary and sufficient for in vivo targeting of transiently-expressed proteins to peroxisomes in suspension-cultured plant cells. Protoplasma 195:156–167

    Article  CAS  Google Scholar 

  • Voß U, Larrieu A, Wells DM (2013) From jellyfish to biosensors: the use of fluorescent proteins in plants. Int J Dev Biol 57:525–533

    Article  PubMed  Google Scholar 

  • Wu TM, Lin WR, Kao YT, Hsu YT, Yeh CH, Hong CY, Kao CH (2013) Identification and characterization of a novel chloroplast/mitochondria co-localized glutathione reductase 3 involved in salt stress response in rice. Plant Mol Biol 83:379–390

    Article  PubMed  CAS  Google Scholar 

  • Xia J, Yamaji N, Ma JF (2013) A plasma membrane-localized small peptide is involved in rice aluminum tolerance. Plant J 76:345–355

    PubMed  CAS  Google Scholar 

  • Xu L, Carrie C, Law SR, Murcha MW, Whelan J (2013) Acquisition, conservation, and loss of dual-targeted proteins in land plants. Plant Physiol 161:644–646

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Yoo SD, Cho YH, Sheen J (2007) Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat Protoc 2:1565–1572

    Article  PubMed  CAS  Google Scholar 

  • Yu H, Jiang W, Liu Q, Zhang H, Piao M, Chen Z, Bian M (2015) Expression pattern and subcellular localization of the ovate protein family in rice. PLoS ONE 10:e0118966

    Article  PubMed  PubMed Central  Google Scholar 

  • Zentella R, Yamauchi D, Ho THD (2002) Molecular dissection of the gibberellin/abscisic acid signaling pathways by transiently expressed RNA interference in barley aleurone cells. Plant Cell 14:2289–2301

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Zhang Y, Su J, Duan S, Ao Y, Dai L, Liu J, Wang P, Li Y, Liu B, Feng D, Wang J, Wang H (2011) A highly efficient rice green tissue protoplast system for transient gene expression and studying light/chloroplast-related processes. Plant Methods 7:30

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

We are grateful to the Joint Center for Instruments and Research of the College of Bioresources and Agriculture at National Taiwan University for confocal microscopy and technical support. This work was supported in part by the Ministry of Science and Technology (MOST) of the Republic of China (NSC 101-2313-B-002-008-MY3 to C. Y. Hong). T. M. Wu was supported by a postdoctoral fellowship from MOST (NSC 103-2811-B-002-142).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chwan-Yang Hong.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1092 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, TM., Lin, KC., Liau, WS. et al. A set of GFP-based organelle marker lines combined with DsRed-based gateway vectors for subcellular localization study in rice (Oryza sativa L.). Plant Mol Biol 90, 107–115 (2016). https://doi.org/10.1007/s11103-015-0397-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-015-0397-8

Keywords

Navigation