Skip to main content
Log in

Increased expression of Fe-chelatase leads to increased metabolic flux into heme and confers protection against photodynamically induced oxidative stress

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Fe-chelatase (FeCh, EC 4.99.1.1) inserts Fe2+ into protoporphyrin IX (Proto IX) to form heme, which influences the flux through the tetrapyrrole biosynthetic pathway as well as fundamental cellular processes. In transgenic rice (Oryza sativa), the ectopic expression of Bradyrhizobium japonicum FeCh protein in cytosol results in a substantial increase of FeCh activity compared to wild-type (WT) rice and an increasing level of heme. Interestingly, the transgenic rice plants showed resistance to oxidative stress caused not only by the peroxidizing herbicide acifluorfen (AF) as indicated by a reduced formation of leaf necrosis, a lower conductivity, lower malondialdehyde and H2O2 contents as well as sustained Fv/Fm compared to WT plants, but also by norflurazon, paraquat, salt, and polyethylene glycol. Moreover, the transgenic plants responded to AF treatment with markedly increasing FeCh activity. The accompanying increases in heme content and heme oxygenase activity demonstrate that increased heme metabolism attenuates effects of oxidative stress caused by accumulating porphyrins. These findings suggest that increases in heme levels and porphyrin scavenging capacity support a detoxification mechanism serving against porphyrin-induced oxidative stress. This study also implicates heme as possibly being a positive signal in plant stress responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Alawady AE, Grimm B (2005) Tobacco Mg protoporphyrin IX methyltransferase is involved in inverse activation of Mg porphyrin and protoheme synthesis. Plant J 41:282–290

    Article  PubMed  CAS  Google Scholar 

  • Asada K (1994) Production and action of active oxygen species in photosynthetic tissues. In: Foyer CH, Mullineaux PM (eds) Causes of photooxidative stress and amelioration of defence systems in plants. CRC Press, Boca Raton, pp 77–104

    Google Scholar 

  • Avin-Wittenberg T, Tzin V, Angelovici R, Less H, Galili G (2012) Deciphering energy-associated gene networks operating in the response of Arabidopsis plants to stress and nutritional cues. Plant J 70:954–966

    Article  PubMed  CAS  Google Scholar 

  • Barajas-Lόpez JD, Blanco NE, Strand A (2013) Plastid-to-nucleus communication, signals controlling the running of the plant cell. Biochim Biophys Acta 1833:425–437

    Article  Google Scholar 

  • Beale SI, Weinstein JD (1990) Tetrapyrrole metabolism in photosynthetic organisms. In: Dailey HA (ed) Biosynthesis of heme and chlorophylls. McGraw-Hill, New York, pp 287–391

    Google Scholar 

  • Buege TA, Aust SD (1978) Microsomal lipid peroxidation. Method Enzymol 52:302–310

    Article  CAS  Google Scholar 

  • Chi W, Sun X, Zhang L (2013) Intracellular signaling from plastid to nucleus. Annu Rev Plant Biol 64:559–582

    Article  PubMed  CAS  Google Scholar 

  • Chow KS, Singh DP, Roper JM, Smith AG (1997) A single precursor protein for ferrochelatase-I from Arabidopsis is imported in vitro into both chloroplasts and mitochondria. J Biol Chem 272:27565–27571

    Article  PubMed  CAS  Google Scholar 

  • Cleary SP, Tan FC, Nakrieko K-A, Thompson SJ, Mullineaux PM, Creissen GP, von Stedingk E, Glaser E, Smith AG, Robinson C (2002) Isolated plant mitochondria import chloroplast precursor proteins in vitro with the same efficiency as chloroplasts. J Biol Chem 277:5562–5569

    Article  PubMed  CAS  Google Scholar 

  • Cornah JE, Roper JM, Singh DP, Smith AG (2002) Measurement of ferrochelatase activity using a novel assay suggests that plastids are the major site of haem biosynthesis in both photosynthetic and nonphotosynthetic cells of pea (Pisum sativum L.). Biochem J 362:423–432

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Dayan FE, Rimando AM, Duke SO, Jacobs NJ (1999) Thiol-dependent degradation of protoporphyrin IX by plant peroxidases. FEBS Lett 444:227–230

    Article  PubMed  CAS  Google Scholar 

  • Franklin KA, Linley PJ, Montgomery BL, Lagarias JC, Thomas B, Jackson SD, Terry MJ (2003) Misregulation of tetrapyrrole biosynthesis in transgenic tobacco seedlings expressing mammalian biliverdin reductase. Plant J 35:717–728

    Article  PubMed  CAS  Google Scholar 

  • Gisk B, Yasui Y, Kohchi T, Frankenberg-Dinkel N (2010) Characterization of the haem oxygenase protein family in Arabidopsis thaliana reveals a diversity of functions. Biochem J 425:425–434

    Article  PubMed  CAS  Google Scholar 

  • Ha SB, Lee SB, Lee Y, Yang K, Lee N, Jang SM, Chung JS, Jung S, Kim YS, Wi SG, Back K (2004) The plastidic Arabidopsis protoporphyrinogen IX oxidase gene, with or without the transit sequence, confers resistance to the diphenyl ether herbicide in rice. Plant Cell Environ 27:79–88

    Article  CAS  Google Scholar 

  • Hansson A, Kannangara CG, von Wettstein D, Hansson M (1999) Molecular basis for semidominance of missense mutations in the XANTHA-H (42-kDa) subunit of magnesium chelatase. Proc Natl Acad Sci USA 96:1744–1749

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Haworth P, Hess FD (1988) The generation of singlet oxygen (1O2) by the nitrodiphenyl ether herbicide oxyfluorfen is independent of photosynthesis. Plant Physiol 86:672–676

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Jung S, Lee Y, Yang K, Lee SB, Jang SM, Ha SB, Back K (2004) Dual targeting of Myxococcus xanthus protoporphyrinogen oxidase into chloroplasts and mitochondria and high level oxyfluorfen resistance. Plant Cell Environ 27:1436–1446

    Article  CAS  Google Scholar 

  • Jung S, Lee H-J, Lee Y, Kang K, Kim YS, Grimm B, Back K (2008) Toxic tetrapyrrole accumulation in protoporphyrinogen IX oxidase-overexpressing transgenic rice plants. Plant Mol Biol 67:535–546

    Article  PubMed  CAS  Google Scholar 

  • Kang K, Lee K, Park S, Lee S, Kim YS, Back K (2010) Overexpression of rice ferrochelatase I and II leads to increased susceptibility to oxyfluorfen herbicide in transgenic rice. J Plant Biol 53:291–296

    Article  CAS  Google Scholar 

  • Kindgren P, Eriksson M-J, Benedict C, Mohapatra A, Gough SP, Hansson M, Kieselbach T, Strand Å (2011) A novel proteomic approach reveals a role for Mg–protoporphyrin IX in response to oxidative stress. Physiol Plant 141:310–320

    Article  PubMed  CAS  Google Scholar 

  • Koch M, Breithaupt C, Kiefersauer R, Greigang J, Huber R, Messerschmidt A (2004) Crystal structure of protoporphyrinogen IX oxidase: a key enzyme in haem and chlorophyll biosynthesis. EMBO J 23:1720–1728

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Lee HJ, Duke SO (1994) Protoporphyrinogen IX-oxidizing activities involved in the mode of action of peroxidizing herbicides. J Agric Food Chem 42:2610–2618

    Article  CAS  Google Scholar 

  • Lee HJ, Ball MD, Parham R, Rebeiz CA (1992) Chloroplast biogenesis 65: enzymic conversion of protoporphyrin IX to Mg-protoporphyrin IX in a subplastidic membrane fraction of cucumber etiochloroplasts. Plant Physiol 99:1134–1140

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Lee HJ, Duke MV, Birk JH, Yamamoto M, Duke SO (1995) Biochemical and physiological effects of benzheterocycles and related compounds. J Agric Food Chem 43:2722–2727

    Article  CAS  Google Scholar 

  • Lee HJ, Lee SB, Chung JS, Han SU, Han O, Guh JO, Jeon JS, An G, Back K (2000) Transgenic rice plants expressing a Bacillus subtilis protoporphyrinogen oxidase gene are resistant to diphenyl ether herbicide oxyfluorfen. Plant Cell Physiol 41:743–749

    Article  PubMed  CAS  Google Scholar 

  • Lermontova I, Grimm B (2000) Overexpression of plastidic protoporphyrinogen IX oxidase leads to resistance to the diphenyl-ether herbicide acifluorfen. Plant Physiol 122:75–83

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Lichtenthaler HK (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymol 148:350–382

    Article  CAS  Google Scholar 

  • Lister R, Chew O, Rudhe C, Lee MN, Whelan J (2001) Arabidopsis thaliana ferrochelatase-I and -II are not imported into Arabidopsis mitochondria. FEBS Lett 506:291–295

    Article  PubMed  CAS  Google Scholar 

  • Masuda T, Suzuki T, Shimada H, Ohta H, Takamiya K (2003) Subcellular localization of two types of ferrochelatase in cucumber. Planta 217:602–609

    Article  PubMed  CAS  Google Scholar 

  • Matringe M, Scalla R (1988) Studies on the mode of action of acifluorfen-methyl in non-chlorophyllous cells: accumulation of tetrapyrroles. Plant Physiol 86:619–622

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Mochizuki N, Brusslan JA, Larkin R, Nagatani A, Chory J (2001) Arabidopsis genomes uncoupled 5 (GUN5) mutant reveals the involvement of Mg-chelatase H subunit in plastid-to-nucleus signal transduction. Proc Natl Acad Sci USA 98:2053–2058

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Mochizuki N, Tanaka R, Tanaka A, Masuda T, Nagatani A (2008) The steady state level of Mg-protoporphyrin IX is not a determinant of plastid-to-nucleus signaling in Arabidopsis. Proc Natl Acad Sci USA 105:15184–15189

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Mochizuki N, Tanaka R, Grimm B, Masuda T, Moulin M, Smith AG, Tanaka A, Terry MJ (2010) The cell biology of tetrapyrroles: a life and death struggle. Trends Plant Sci 15:488–498

    Article  PubMed  CAS  Google Scholar 

  • Möller SG, Kundel T, Chua N-H (2001) A plastidic ABC protein involved in intercompartmental communication of light signaling. Genes & Dev 15:90–103

    Article  Google Scholar 

  • Moore MR (1993) Biochemistry of porphyria. Int J Biochem 25:1353–1368

    Article  PubMed  CAS  Google Scholar 

  • Moulin M, McCormac AC, Terry MJ, Smith AG (2008) Tetrapyrrole profiling in Arabidopsis seedlings reveals that retrograde plastid nuclear signaling is not due to Mg-protoporphyrin IX accumulation. Proc Natl Acad Sci USA 105:15178–15183

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Muramoto T, Tsurui N, Terry MJ, Yokota A, Kohchi T (2002) Expression and biochemical properties of a ferredoxin-dependent heme oxygenase required for phytochrome chromophore synthesis. Plant Physiol 130:1958–1966

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Nagai S, Koide M, Takahashi S, Kikuta A, Mitsuko A, Sasaki-Sekimoto Y, Ohta H, Takamiya K-I, Masuda T (2007) Induction of isoforms of tetrapyrrole biosynthetic enzymes, AtHEMA2 and AtFC1, under stress conditions and their physiological functions in Arabidopsis. Plant Physiol 144:1039–1051

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Nordmann Y, Deybach J-C (1990) Human hereditary porphyries. In: Dailey HA (ed) Biosynthesis of Heme and Chlorophylls. McGraw-Hill, New York, pp 491–542

    Google Scholar 

  • Noriega GO, Balestrasse KB, Batlle A, Tomaro ML (2004) Heme oxygenase exerts a protective role against oxidative stress in soybean leaves. Biochem Biophys Res Commun 323:1003–1008

    Article  PubMed  CAS  Google Scholar 

  • Olson PD, Varner JE (1993) Hydrogen peroxide and lignification. Plant J 4:887–892

    Article  CAS  Google Scholar 

  • Otterbein LE, Soares MP, Yamashita K, Bach FH (2003) Heme oxygenase-1: unleashing the protective properties of heme. Trends Immunol 24:449–455

    Article  PubMed  CAS  Google Scholar 

  • Papenbrock J, Grimm B (2001) Regulatory network of tetrapyrrole biosynthesis—studies of intracellular signaling involved in metabolic and developmental control of plastids. Planta 213:667–681

    Article  PubMed  CAS  Google Scholar 

  • Papenbrock J, Mock HP, Kruse E, Grimm B (1999) Expression studies in tetrapyrrole biosynthesis: inverse maxima of magnesium chelatase and ferrochelatase activity during cyclic photoperiods. Planta 208:264–273

    Article  CAS  Google Scholar 

  • Papenbrock J, Mock H-P, Pfündel E, Grimm B (2000) Decreased and increased expression of the subunit CHL I diminishes Mg chelatase activity and reduces chlorophyll synthesis in transgenic tobacco plants. Plant J 22:155–164

    Article  PubMed  CAS  Google Scholar 

  • Papenbrock J, Mishra S, Mock HP, Kruse E, Schmidt EK, Petersmann A, Braun HP, Grimm B (2001) Impaired expression of the plastidic ferrochelatase by antisense RNA synthesis leads to a necrotic phenotype of transformed tobacco plants. Plant J 28:41–50

    Article  PubMed  CAS  Google Scholar 

  • Peter E, Rothbart M, Oelze M-L, Shalygo N, Dietz K-J, Grimm B (2010) Mg protoporphyrin monomethylester cyclase deficiency and effects on tetrapyrrole metabolism in different light conditions. Plant Cell Physiol 51:1229–1241

    Article  PubMed  CAS  Google Scholar 

  • Phung T-H, Jung H-I, Park J-H, Kim J-G, Back K, Jung S (2011) Porphyrin biosynthesis control under water stress: sustained porphyrin status correlates with drought tolerance in transgenic rice. Plant Physiol 157:1746–1764

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Pontier D, Albrieux C, Joyard J, Lagrange T, Block MA (2007) Knock-out of the magnesium protoporphyrin IX methyltransferase gene in Arabidopsis. Effects on chloroplast development and on chloroplast-to-nucleus signaling. J Biol Chem 282:2297–2304

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Pontoppidan B, Kannangara CG (1994) Purification and partial characterization of barley glutamyl-tRNA (Glu) reductase, the enzyme that directs glutamate to chlorophyll biosynthesis. Eur J Biochem 225:529–537

    Article  PubMed  CAS  Google Scholar 

  • Porra RJ, Lascelles J (1968) Studies on ferrochelatase: the enzymatic formation of haem in proplastids, chloroplasts and plant mitochondria. Biochem J 108:343–348

    PubMed  CAS  PubMed Central  Google Scholar 

  • Rao MV, Paliyath G, Ormrod DP (1996) Ultraviolet-B- and ozone-induced biochemical changes in antioxidant enzymes of Arabidopsis thaliana. Plant Physiol 110:125–136

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ricchelli F (1995) Photophysical properties of porphyins in biological membranes. J Photochem Photobiol B Biol 29:109–118

    Article  CAS  Google Scholar 

  • Roper JM, Smith AG (1997) Molecular localization of ferrochelatase in higher plant chloroplasts. Eur J Biochem 246:32–37

    Article  PubMed  CAS  Google Scholar 

  • Sassa S, Nagai T (1996) The role of heme in gene expression. Int J Hematol 63:167–178

    Article  PubMed  CAS  Google Scholar 

  • Schneegurt MA, Beale SI (1986) Biosynthesis of protoheme and heme a from glutamate in maize. Plant Physiol 81:965–971

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Singh DP, Cornah JE, Hadingham S, Smith AG (2002) Expression analysis of the two ferrochelatase genes in Arabidopsis in different tissues and under stress conditions reveals their different roles in haem biosynthesis. Plant Mol Biol 50:773–788

    Article  PubMed  CAS  Google Scholar 

  • Smith AG (1988) Subcellular localization of two porphyrin-synthesis enzymes in Pisum sativum (pea) and Arum (cuckoo-pint) species. Biochem J 249:423–428

    PubMed  CAS  PubMed Central  Google Scholar 

  • Smith AG, Marsh O, Elder GH (1993) Investigation of the subcellular location of the tetrapyrrole-biosynthesis enzyme coprotoporphyrinogen oxidase in higher plants. Biochem J 292:503–508

    PubMed  CAS  PubMed Central  Google Scholar 

  • Soldatova O, Apchelimov A, Radukina N, Ezhova T, Shestakov S, Ziemann V, Hedtke B, Grimm B (2005) An Arabidopsis mutant that is resistant to the protoporphyrinogen oxidase inhibitor acifluorfen shows regulatory changes in tetrapyrrole biosynthesis. Mol Gen Genomics 273:311–318

    Article  CAS  Google Scholar 

  • Srivastava A, Beale SI (2005) Glutamyl-tRNA reductase of Chlorobium vibrioforme is a dissociable homodimer that contains one tightly bound heme per subunit. J Bacteriol 187:4444–4450

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Strand A, Asami T, Alonso J, Ecker JR, Chory J (2003) Chloroplast to nucleus communication triggered by accumulation of Mg-protoporphyrin IX. Nature 421:79–83

    Article  PubMed  CAS  Google Scholar 

  • Suzuki T, Masuda T, Singh DP, Tan FC, Tsuchiya T, Shimada H, Ohta H, Smith AG, Takamiya K (2002) Two types of ferrochelatase in photosynthetic and nonphotosynthetic tissues of cucumber: their difference in phylogeny, gene expression, and localization. J Biol Chem 277:4731–4737

    Article  PubMed  CAS  Google Scholar 

  • Tanaka A, Tanaka R (2006) Chlorophyll metabolism. Curr Opin Plant Biol 9:248–255

    Article  PubMed  CAS  Google Scholar 

  • Tanaka R, Tanaka A (2007) Tetrapyrrole biosynthesis in higher plants. Annu Rev Plant Biol 58:321–346

    Article  PubMed  CAS  Google Scholar 

  • Terry MJ, Smith AG (2013) A model for tetrapyrrole synthesis as the primary mechanism for plastid-to-nucleus signaling during chloroplast biogenesis. Front Plant Sci 4:14

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Terry MJ, Linley PJ, Kohchi T (2002) Making light of it: the role of plant heme oxygenases in phytochrome chromophore synthesis. Biochem Soc Trans 30:604–609

    Article  PubMed  Google Scholar 

  • Thordal-Christensen H, Zhang Z, Wei Y, Collinge DB (1997) Subcellular localization of H2O2 in plants. H2O2 accumulation in papillae and hypersensitive response during the barley–powdery mildew interaction. Plant J 11:1187–1194

    Article  CAS  Google Scholar 

  • Ujwal ML, McCormac AC, Goulding A, Kumar AM, Soll D, Terry MJ (2002) Divergent regulation of the HEMA gene family encoding glutamyl-tRNA reductase in Arabidopsis thaliana: expression of HEMA2 is regulated by sugars, but is independent of light and plastid signaling. Plant Mol Biol 50:83–91

    Article  PubMed  CAS  Google Scholar 

  • Vanhee C, Batoko H (2011) Arabidopsis TSPO and porphyrins metabolism. A transient signaling connection? Plant Signal Behav 6:1383–1385

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Vanhee C, Zapotoczny G, Masquelier D, Ghislain M, Batoko H (2011) The Arabidopsis multistress regulator TSPO is a heme binding membrane protein and a potential scavenger of porphyrins via an autophagy-dependent degradation mechanism. Plant Cell 23:785–805

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Vasileuskaya Z, Oster U, Beck CF (2005) Mg-protoporphyrin IX and heme control HEMA, the gene encoding the first specific step of tetrapyrrole biosynthesis, in Chlamydomonas reinhardtii. Eukaryot Cell 4:1620–1628

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Voinnet O, Rivas S, Mestre P, Baulcombe D (2003) An enhanced transient expression system in plants based on suppression of gene silencing by the p19 protein of tomato bushy stunt virus. Plant J 33:949–956

    Article  PubMed  CAS  Google Scholar 

  • von Gromoff ED, Alawady A, Meinecke L, Grimm B, Beck CF (2008) Heme, a plastid-derived regulator of nuclear gene expression in Chlamydomonas. Plant cell 20:552–567

    Article  Google Scholar 

  • Vothknecht UC, Kannangara CG, von Wettstein D (1998) Barley glutamyl tRNAGlu reductase: mutations affecting haem inhibition and enzyme activity. Phytochemistry 47:513–519

    Article  PubMed  CAS  Google Scholar 

  • Voß B, Meinecke L, Kurz T, Al-Babili S, Beck CF, Hess WR (2011) Hemin and magnesium-protoporphyrin IX induce global changes in gene expression in Chlamydomonas reinhardtii. Plant Physiol 155:892–905

    Article  PubMed  PubMed Central  Google Scholar 

  • Woodbury W, Spencer AK, Stahman MA (1971) An improved procedure for using ferricyanide for detecting catalase isozymes. Anal Biochem 44:301–305

    Article  PubMed  CAS  Google Scholar 

  • Woodson JD, Perez-Ruiz JM, Chory J (2011) Heme synthesis by plastid ferrochelatase I regulates nuclear gene expression in plants. Cur Biol 21:897–903

    Article  CAS  Google Scholar 

  • Yannarelli GG, Noriega GO, Batlle A, Tomaro ML (2006) Heme oxygenase up-regulation in ultraviolet-B irradiated soybean plants involves reactive oxygen species. Planta 224:1154–1162

    Article  PubMed  CAS  Google Scholar 

  • Zhang L, Hach A (1999) Molecular mechanism of heme signaling in yeast: the transcriptional activator Hap1 serves as the key mediator. Cell Mol Life Sci 56:415–426

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Research Foundation of Korea Grant funded by the Korean Government (Ministry of Education, Science and Technology). (NRF-2009-0076123 and NRF-2010-0005635).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunyo Jung.

Additional information

Jin-Gil Kim and Kyoungwhan Back have equally contributed to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPTX 548 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, JG., Back, K., Lee, H.Y. et al. Increased expression of Fe-chelatase leads to increased metabolic flux into heme and confers protection against photodynamically induced oxidative stress. Plant Mol Biol 86, 271–287 (2014). https://doi.org/10.1007/s11103-014-0228-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-014-0228-3

Keywords

Navigation