Skip to main content
Log in

Identification and characterization of CYP79D16 and CYP71AN24 catalyzing the first and second steps in l-phenylalanine-derived cyanogenic glycoside biosynthesis in the Japanese apricot, Prunus mume Sieb. et Zucc.

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Japanese apricot, Prunus mume Sieb. et Zucc., belonging to the Rosaceae family, produces as defensive agents the cyanogenic glycosides prunasin and amygdalin, which are presumably derived from l-phenylalanine. In this study, we identified and characterized cytochrome P450s catalyzing the conversion of l-phenylalanine into mandelonitrile via phenylacetaldoxime. Full-length cDNAs encoding CYP79D16, CYP79A68, CYP71AN24, CYP71AP13, CYP71AU50, and CYP736A117 were cloned from P. mume ‘Nanko’ using publicly available P. mume RNA-sequencing data, followed by 5′- and 3′-RACE. CYP79D16 was expressed in seedlings, whereas CYP71AN24 was expressed in seedlings and leaves. Enzyme activity of these cytochrome P450s expressed in Saccharomyces cerevisiae was evaluated by liquid and gas chromatography–mass spectrometry. CYP79D16, but not CYP79A68, catalyzed the conversion of l-phenylalanine into phenylacetaldoxime. CYP79D16 showed no activity toward other amino acids. CYP71AN24, but not CYP71AP13, CYP71AU50, and CYP736A117, catalyzed the conversion of phenylacetaldoxime into mandelonitrile. CYP71AN24 also showed lower conversions of various aromatic aldoximes and nitriles. The K m value and turnover rate of CYP71AN24 for phenylacetaldoxime were 3.9 µM and 46.3 min−1, respectively. The K m value and turnover of CYP71AN24 may cause the efficient metabolism of phenylacetaldoxime, avoiding the release of the toxic intermediate to the cytosol. These results suggest that cyanogenic glycoside biosynthesis in P. mume is regulated in concert with catalysis by CYP79D16 in the parental and sequential reaction of CYP71AN24 in the seedling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Andersen MD, Busk PK, Svendsen I, Møller BL (2000) Cytochromes P-450 from cassava (Manihot esculenta Crantz) catalyzing the first steps in the biosynthesis of the cyanogenic glucosides linamarin and lotaustralin: cloning, functional expression in Pichia pastoris, and substrate specificity of the isolated recombinant enzymes. J Biol Chem 275:1966–1975. doi:10.1074/jbc.275.3.1966

    Article  CAS  PubMed  Google Scholar 

  • Asano Y, Kato Y (1998) Z-phenylacetaldoxime degradation by a novel aldoxime dehydratase from Bacillus sp. strain OxB-1. FEMS Microbiol Lett 158:185–190. doi:10.1016/S0378-1097(97)00520-X

    Article  CAS  Google Scholar 

  • Asano Y, Tamura K, Doi N et al (2005) Screening for new hydroxynitrilases from plants. Biosci Biotechnol Biochem 69:2349–2357

    Article  CAS  PubMed  Google Scholar 

  • Bak S, Kahn RA, Nielsen HL et al (1998a) Cloning of three A-type cytochromes P450, CYP71E1, CYP98, and CYP99 from Sorghum bicolor (L.) Moench by a PCR approach and identification by expression in Escherichia coli of CYP71E1 as a multifunctional cytochrome P450 in the biosynthesis of the cyanogenic glucoside dhurrin. Plant Mol Biol 36:393–405. doi:10.1023/A:1005915507497

    Article  CAS  PubMed  Google Scholar 

  • Bak S, Nielsen HL, Halkier BA (1998b) The presence of CYP79 homologues in glucosinolate-producing plants shows evolutionary conservation of the enzymes in the conversion of amino acid to aldoxime in the biosynthesis of cyanogenic glucosides and glucosinolates. Plant Mol Biol 38:725–734. doi:10.1023/A:1006064202774

    Article  CAS  PubMed  Google Scholar 

  • Bak S, Paquette SM, Morant M et al (2006) Cyanogenic glycosides: a case study for evolution and application of cytochromes P450. Phytochem Rev 5:309–329

    Article  CAS  Google Scholar 

  • Bak S, Beisson F, Bishop G et al (2011) Cytochromes P450. Arabidopsis Book 9:e0144. doi:10.1199/tab.0144

    Article  PubMed Central  PubMed  Google Scholar 

  • Berenguer-Navarro V, Giner-Galván RM, Grané-Teruel N, Arrazola-Paternina G (2002) Chromatographic determination of cyanoglycosides prunasin and amygdalin in plant extracts using a porous graphitic carbon column. J Agric Food Chem 50:6960–6963. doi:10.1021/jf0256081

    Article  CAS  PubMed  Google Scholar 

  • Bjarnholt N, Møller BL (2008) Hydroxynitrile glucosides. Phytochemistry 69:1947–1961. doi:10.1016/j.phytochem.2008.04.018

    Article  CAS  PubMed  Google Scholar 

  • Busk PK, Møller BL (2002) Dhurrin synthesis in sorghum is regulated at the transcriptional level and induced by nitrogen fertilization in older plants. Plant Physiol 129:1222–1231. doi:10.1104/pp.000687

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fukuda T, Ito H, Mukainaka T et al (2003) Anti-tumor promoting effect of glycosides from Prunus persica seeds. Biol Pharm Bull 26:271–273. doi:10.1248/bpb.26.271

    Article  CAS  PubMed  Google Scholar 

  • Fukuta Y, Nanda S, Kato Y et al (2011) Characterization of a new (R)-hydroxynitrile lyase from the Japanese apricot Prunus mume and cDNA cloning and secretory expression of one of the isozymes in Pichia pastoris. Biosci Biotechnol Biochem 75:214–220

    Article  CAS  PubMed  Google Scholar 

  • Ganjewala D, Kumar S, Devi A, Ambika K (2010) Advances in cyanogenic glycosides biosynthesis and analyses in plants. Acta Biologica Szegediensis 54:1–14

    Google Scholar 

  • Gertz EM, Yu Y-K, Agarwala R et al (2006) Composition-based statistics and translated nucleotide searches: improving the TBLASTN module of BLAST. BMC Biol 4:41. doi:10.1186/1741-7007-4-41

    Article  PubMed Central  PubMed  Google Scholar 

  • International Peach Genome Initiative, Verde I, Abbott AG et al (2013) The high-quality draft genome of peach (Prunus persica) identifies unique patterns of genetic diversity, domestication and genome evolution. Nat Genet 45:487–494. doi:10.1038/ng.2586

    Article  CAS  PubMed  Google Scholar 

  • Irmisch S, McCormick AC, Boeckler GA et al (2013) Two herbivore-induced cytochrome P450 enzymes CYP79D6 and CYP79D7 catalyze the formation of volatile aldoximes involved in poplar defense. Plant Cell 25:4737–4754. doi:10.1105/tpc.113.118265

    Article  CAS  PubMed  Google Scholar 

  • Ito H, Fukuda Y, Murata K, Kimura A (1983) Transformation of intact yeast cells treated with alkali cations. J Bacteriol 153:163–168

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jones PR, Møller BL, Hoj PB (1999) The UDP-glucose:p-hydroxymandelonitrile-O-glucosyltransferase that catalyzes the last step in synthesis of the cyanogenic glucoside dhurrin in Sorghum bicolor. Isolation, cloning, heterologous expression, and substrate specificity. J Biol Chem 274:35483–35491. doi:10.1074/jbc.274.50.35483

    Article  CAS  PubMed  Google Scholar 

  • Jørgensen K, Morant AV, Morant M et al (2011) Biosynthesis of the cyanogenic glucosides linamarin and lotaustralin in cassava: isolation, biochemical characterization, and expression pattern of CYP71E7, the oxime-metabolizing cytochrome P450 enzyme. Plant Physiol 155:282–292. doi:10.1104/pp.110.164053

    Article  PubMed Central  PubMed  Google Scholar 

  • Kahn RA, Fahrendorf T, Halkier BA, Møller BL (1999) Substrate specificity of the cytochrome P450 enzymes CYP79A1 and CYP71E1 involved in the biosynthesis of the cyanogenic glucoside dhurrin in Sorghum bicolor (L.) Moench. Arch Biochem Biophys 363:9–18. doi:10.1006/abbi.1998.1068

    Article  CAS  PubMed  Google Scholar 

  • Kannangara R, Motawia MS, Hansen NKK et al (2011) Characterization and expression profile of two UDP-glucosyltransferases, UGT85K4 and UGT85K5, catalyzing the last step in cyanogenic glucoside biosynthesis in cassava. Plant J 68:287–301. doi:10.1111/j.1365-313X.2011.04695.x

    Article  CAS  PubMed  Google Scholar 

  • Kato Y, Nakamura K, Sakiyama H et al (2000) Novel heme-containing lyase, phenylacetaldoxime dehydratase from Bacillus sp. strain OxB-1: purification, characterization, and molecular cloning of the gene. Biochemistry 39:800–809. doi:10.1021/bi991598u

    Article  CAS  PubMed  Google Scholar 

  • Leinonen R, Sugawara H, Shumway M, International Nucleotide Sequence Database Collaboration (2011) The sequence read archive. Nucleic Acids Res 39:D19–D21. doi:10.1093/nar/gkq1019

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Maria Koch B, Sibbesen O, Halkier BA et al (1995) The primary sequence of cytochrome P450tyr, the multifunctional N-hydroxylase catalyzing the conversion of l-tyrosine to P-hydroxyphenylacetaldehyde oxime in the biosynthesis of the cyanogenic glucoside dhurrin in Sorghum bicolor (L.) Moench. Arch Biochem Biophys 323:177–186. doi:10.1006/abbi.1995.0024

    Article  Google Scholar 

  • Møller BL (1977) Chemical synthesis of labelled intermediates in cyanogenic glucoside biosynthesis. J Label Compd Radiopharm 14:663–671. doi:10.1002/jlcr.2580140504

    Article  Google Scholar 

  • Nelson DR (2009) The cytochrome P450 homepage. Hum Genomics 4:59. doi:10.1186/1479-7364-4-1-59

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nielsen JS, Møller BL (2000) Cloning and expression of cytochrome P450 enzymes catalyzing the conversion of tyrosine to p-hydroxyphenylacetaldoxime in the biosynthesis of cyanogenic glucosides in Triglochin maritima. Plant Physiol 122:1311–1321

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nielsen KA, Tattersall DB, Jones PR, Møller BL (2008) Metabolon formation in dhurrin biosynthesis. Phytochemistry 69:88–98. doi:10.1016/j.phytochem.2007.06.033

    Article  CAS  PubMed  Google Scholar 

  • Oeda K, Sakaki T, Ohkawa H (1985) Expression of rat liver cytochrome P-450MC cDNA in Saccharomyces cerevisiae. DNA 4:203–210. doi:10.1089/dna.1985.4.203

    Article  CAS  PubMed  Google Scholar 

  • Ohtsubo T, Ikeda F (1994) Seasonal changes of cyanogenic glycosides in Mume (Prunus mume Sieb. et Zucc.) seeds. J Jpn Soc Hortic Sci 62:695–700

    Article  CAS  Google Scholar 

  • Omura T, Sato R (1964) The carbon monooxide-binding pigment of liver microsomes. I. Evidence for its hemoprotein nature. J Biol Chem 239:2370–2378

    CAS  PubMed  Google Scholar 

  • Price NR (1985) The mode of action of fumigants. J Stored Prod Res 21:157–164

    Article  CAS  Google Scholar 

  • Sakaki T, Akiyoshi-Shibata M, Yabusaki Y, Ohkawa H (1992) Organella-targeted expression of rat liver cytochrome P450c27 in yeast. Genetically engineered alteration of mitochondrial P450 into a microsomal form creates a novel functional electron transport chain. J Biol Chem 267:16497–16502

    CAS  PubMed  Google Scholar 

  • Sánchez-Pérez R, Jørgensen K, Olsen CE et al (2008) Bitterness in almonds. Plant Physiol 146:1040–1052. doi:10.1104/pp.107.112979

    Article  PubMed Central  PubMed  Google Scholar 

  • Shimada M, Conn EE (1977) The enzymatic conversion of p-hydroxyphenylacetaldoxime to p-hydroxymandelonitrile. Arch Biochem Biophys 180:199–207

    Article  CAS  PubMed  Google Scholar 

  • Shulaev V, Sargent DJ, Crowhurst RN et al (2011) The genome of woodland strawberry (Fragaria vesca). Nat Genet 43:109–116. doi:10.1038/ng.740

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sibbesen O, Koch B, Halkier BA, Møller BL (1994) Isolation of the heme-thiolate enzyme cytochrome P-450TYR, which catalyzes the committed step in the biosynthesis of the cyanogenic glucoside dhurrin in Sorghum bicolor (L.) Moench. Proc Natl Acad Sci USA 91:9740–9744

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Terada H, Sakabe Y (1988) High-performance liquid chromatographic determination of amygdalin in Ume extract. J Hyg Chem 34:36–40

    CAS  Google Scholar 

  • Wang H, Sun H, Wei D (2013) Discovery and characterization of a highly efficient enantioselective mandelonitrile hydrolase from Burkholderia cenocepacia J2315 by phylogeny-based enzymatic substrate specificity prediction. BMC Biotechnol 13:14. doi:10.1186/1472-6750-13-14

    Article  PubMed Central  PubMed  Google Scholar 

  • Wittstock U, Halkier BA (2000) Cytochrome P450 CYP79A2 from Arabidopsis thaliana L. Catalyzes the conversion of l-phenylalanine to phenylacetaldoxime in the biosynthesis of benzylglucosinolate. J Biol Chem 275:14659–14666. doi:10.1074/jbc.275.19.14659

    Article  CAS  PubMed  Google Scholar 

  • Xie Y, Wu G, Tang J et al (2014) SOAPdenovo-Trans: de novo transcriptome assembly with short RNA-Seq reads. Bioinformatics. doi:10.1093/bioinformatics/btu077

    Google Scholar 

  • Zagrobelny M, Bak S, Møller BL (2008) Cyanogenesis in plants and arthropods. Phytochemistry 69:1457–1468. doi:10.1016/j.phytochem.2008.02.019

    Article  CAS  PubMed  Google Scholar 

  • Zhang Q, Chen W, Sun L et al (2012) The genome of Prunus mume. Nat Commun 3:1318. doi:10.1038/ncomms2290

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. D. Nelson for naming cytochrome P450s, and Dr. T. Sakaki for providing yeast P450 reductase co-expression plasmid pGYR and the expression host S. cerevisiae AH22. This work was supported by Exploratory Research for Advanced Technology (ERATO) program of the Japan Science and Technology Agency (JST).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuhisa Asano.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 58 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamaguchi, T., Yamamoto, K. & Asano, Y. Identification and characterization of CYP79D16 and CYP71AN24 catalyzing the first and second steps in l-phenylalanine-derived cyanogenic glycoside biosynthesis in the Japanese apricot, Prunus mume Sieb. et Zucc.. Plant Mol Biol 86, 215–223 (2014). https://doi.org/10.1007/s11103-014-0225-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-014-0225-6

Keywords

Navigation