Skip to main content
Log in

Characterization and expression patterns of small RNAs in synthesized Brassica hexaploids

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Polyploidy has played an important role in promoting plant evolution through genomic merging and doubling. We used high-throughput sequencing to compare miRNA expression profiles between Brassica hexaploid and its parents. A total of 613, 784 and 742 known miRNAs were identified in Brassica rapa, Brassica carinata, and Brassica hexaploid, respectively. We detected 618 miRNAs were differentially expressed (log2Ratio ≥ 1, P ≤ 0.05) between Brassica hexaploid and its parents, and 425 miRNAs were non-additively expressed in Brassica hexaploid, which suggest a trend of non-additive miRNA regulation following hybridization and polyploidization. Remarkably, majority of the non-additively expressed miRNAs in the Brassica hexaploid are repressed, and there was a bias toward repression of B. rapa miRNAs, which is consistent with the progenitor-biased gene repression in the synthetic allopolyploids. In addition, we identified 653 novel mature miRNAs in Brassica hexaploid and its parents. Finally, we found that almost all the non-additive accumulation of siRNA clusters exhibited a low-parent pattern in Brassica hexaploid. Non-additive small RNA regulation is involved in a range of biological pathways, probably providing a driving force for variation and adaptation in allopolyploids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Akhunov ED, Sehgal S, Liang HQ, Wang SC, Akhunova AR, Kaur G, Li WL, Forrest KL, See D, Simkova H, Ma YQ, Hayden MJ, Luo MC, Faris JD, Dolezel J, Gill BS (2013) Comparative analysis of syntenic genes in grass genomes reveals accelerated rates of gene structure and coding sequence evolution in polyploid wheat. Plant Physiol 161:252–265

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Allen E, Xie Z, Gustafson AM, Carrington JC (2005) MicroRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell 121:207–221

    Article  CAS  PubMed  Google Scholar 

  • Buggs RJA, Zhang LJ, Miles N, Tate JA, Gao L, Wei W, Schnable PS, Barbazuk WB, Soltis PS, Soltis DE (2011) Transcriptomic shock generates evolutionary novelty in a newly formed, natural allopolyploid plant. Curr Biol 21:551–556

    Article  CAS  PubMed  Google Scholar 

  • Carthew RW, Sontheimer EJ (2009) Origins and mechanisms of miRNAs and siRNAs. Cell 136:642–655

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Casneuf T, De Bodt S, Raes J, Maere S, Van de Peer Y (2006) Nonrandom divergence of gene expression following gene and genome duplications in the flowering plant Arabidopsis thaliana. Genome Biol 7:R13

    Article  PubMed Central  PubMed  Google Scholar 

  • Chague V, Just J, Mestiri I, Balzergue S, Tanguy AM, Huneau C, Huteau V, Belcram H, Coriton O, Jahier J, Chalhoub B (2010) Genome-wide gene expression changes in genetically stable synthetic and natural wheat allohexaploids. New Phytol 187:1181–1194

    Article  CAS  PubMed  Google Scholar 

  • Chandra A, Dubey A (2010) Effect of ploidy levels on the activities of D1-pyrroline-5-carboxylate synthetase, superoxide dismutase and peroxidase in Cenchrus species grown under water stress. Plant Physiol Bioch 48:27–34

    Article  CAS  Google Scholar 

  • Chaudhary B, Flagel L, Stupar RM, Udall JA, Verma N, Springer NM, Wendel JF (2009) Reciprocal silencing, transcriptional bias and functional divergence of homeologs in polyploidy cotton (Gossypium). Genetics 182:503–517

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chen ZJ (2007) Genetic and epigenetic mechanisms for gene expression and phenotypic variation in plant polyploids. Annu Rev Plant Biol 58:377–406

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chen XM (2009) Small RNAs and their roles in plant development. Annu Rev Cell Dev Bi 25:21–44

    Article  Google Scholar 

  • Chen ZJ (2010) Molecular mechanisms of polyploidy and hybrid vigor. Trends Plant Sci 15:57–71

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chen CF, Ridzon DA, Broomer AJ, Zhou ZH, Lee DH, Ngyyen JT, Barbisin M, Xu NL, Mahuvakar VR, Andersen MR, Lao KQ, Livak KJ, Guegler KJ (2005) Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res 33:e179

    Article  PubMed Central  PubMed  Google Scholar 

  • Fahlgren N, Howell MD, Kasschau KD, Chapman EJ, Sullivan CM, Cumbie JS, Givan SA, Law TF, Grant SR, Dangel JL, Carrington JC (2007) High-throughput sequencing of Arabidopsis microRNAs: evidence for frequent birth and death of MiRNA genes. PLoS ONE 2:e219

    Article  PubMed Central  PubMed  Google Scholar 

  • Gardner PP, Daub J, Tate JG, Nawrocki EP, Kolbe DL, Lindgreen S, Wilkinson AC, Finn RD, Griffiths-Jones S, Eddy SR, Bateman A (2009) Rfam: updates to the RNA families database. Nucleic Acids Res 37:D136–D140

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Giron D, Frago E, Glevarec G, Pieterse CMJ, Dicke M (2013) Cytokinins as key regulators in plant-microbe-insect interactions: connecting plant growth and defence. Funct Ecol 27:599–609

    Article  Google Scholar 

  • Guo M, Rupe MA, Zinselmeier C, Habben J, Bowen BA, Smith OS (2004) Allelic variation of gene expression in maize hybrids. Plant Cell 16:1707–1716

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ha M, Pang MX, Agarwal V, Chen ZJ (2008) Interspecies regulation of microRNAs and their targets. Biochim Biophys Acta 1779:735–742

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ha M, Lu J, Tian L, Ramachandran V, Kasschau KD, Chapman EJ, Carrington JC, Chen XM, Wang XJ, Chen ZJ (2009) Small RNAs serve as a genetic buffer against genomic shock in Arabidopsis interspecific hybrids and allopolyploids. Proc Natl Acad Sci USA 106:17835–17840

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • He GM, Zhu XP, Elling AA, Chen LB, Wang XF, Guo L, Liang MZ, He H, Zhang HY, Chen FF, Qi YJ, Chen RS, Deng XW (2010) Global epigenetic and transcriptional trends among two rice subspecies and their reciprocal hybrids. Plant Cell 22:17–33

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jiang JJ, Shao YL, Du K, Ran LP, Fang XP, Wang YP (2013) Use of digital gene expression to discriminate gene expression differences in early generations of resynthesized Brassica napus and its diploid progenitors. BMC Genom 14:72

    Article  CAS  Google Scholar 

  • Kantama L, Junbuathong S, Sakulkoo J, de Jong H, Apisitwanich S (2013) Epigenetic changes and transposon reactivation in Thai rice hybrids. Mol Breed 31:815–827

    Article  CAS  Google Scholar 

  • Kashkush K, Feldman M, Levy AA (2012) Gene loss, silencing and activation in a newly synthesized wheat allotetraploid. Genetics 160:1651–1659

    Google Scholar 

  • Kenan-Eichler M, Leshkowitz D, Tal L, Noor E, Melamed-Bessudo C, Feldman M, Levy AA (2011) Wheat hybridization and polyploidization results in deregulation of small RNAs. Genetics 188:263-U59

    Article  Google Scholar 

  • Khraiwesh B, Zhu JK, Zhu J (2012) Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants. Biochim Biophys Acta 1819:137–148

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li R, Li Y, Kristiansen K, Wang J (2008) SOAP: short oligonucleotide alignment program. Bioinformatics 24:713–714

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Varala K, Moose SP, Hudson ME (2012) The Inheritance Pattern of 24 nt siRNA clusters in Arabidopsis hybrids is influenced by proximity to transposable elements. PLoS ONE 7:e47043

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li BS, Duan H, Li JG, Deng XW, Yin WL, Xia XL (2013) Global identification of miRNAs and targets in Populus euphratica under salt stress. Plant Mol Biol 81:525–539

    Article  CAS  PubMed  Google Scholar 

  • Manzaneda AJ, Rey PJ, Bastida JM, Weiss-Lehman C, Raskin E, Mitchell-Olda T (2012) Environmental aridity is associated with cytotype segregation and polyploidy occurrence in Brachypodium distachyon (Poaceae). New Phytol 193:797–805

    Article  PubMed Central  PubMed  Google Scholar 

  • McClintock B (1984) The significance of responses of the genome to challenge. Science 226:792–801

    Article  CAS  PubMed  Google Scholar 

  • Ng DWK, Lu J, Chen ZJ (2012) Big roles for small RNAs in polyploidy, hybrid vigor, and hybrid incompatibility. Curr Opin Plant Biol 15:154–161

    Article  CAS  PubMed  Google Scholar 

  • Ni ZF, Kim ED, Ha MS, Lackey E, Liu JX, Zhang YR, Sun QX, Chen ZJ (2009) Altered circadian rhythms regulate growth vigour in hybrids and allopolyploids. Nature 457:327–331

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Qi Y, Denli AM, Hannon GJ (2005) Biochemical specialization within Arabidopsis RNA silencing pathways. Mol Cell 19:421–428

    Article  CAS  PubMed  Google Scholar 

  • Qi B, Huang W, Zhu B, Zhong XF, Guo JH, Zhao N, Xu CM, Zhang HK, Pang JS, Han FP, Liu B (2012) Global transgenerational gene expression dynamics in two newly synthesized allohexaploid wheat (Triticum aestivum) lines. BMC Biol 10:3

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rhoades M, Reinhart B, Lim L, Burge C, Bartel B, Bartel D (2002) Prediction of plant microRNA targets. Cell 110:513–520

    Article  CAS  PubMed  Google Scholar 

  • Saleh B, Allario T, Dambier D, Ollitrault P, Morillon R (2008) Tetraploid citrus rootstocks are more tolerant to salt stress than diploid. CR Biol 331:703–710

    Article  Google Scholar 

  • Sarilar V, Palacios PM, Rousselet A, Ridel C, Falque M, Eber F, Chevre AM, Joets J, Brabant P, Alix K (2013) Allopolyploidy has a moderate impact on restructuring at three contrasting transposable element insertion sites in resynthesized Brassica napus allotetraploids. New Phytol 198:593–604

    Article  CAS  PubMed  Google Scholar 

  • Schwab R, Palatnik JF, Riester M, Schommer C, Schmid M, Schwab R, Palatnik JF, Riester M, Schommer C, Schmid M, Weigel D (2005) Specific effects of microRNAs on the plant transcriptome. Dev Cell 8:517–527

    Article  CAS  PubMed  Google Scholar 

  • Sun GL (2012) MicroRNAs and their diverse functions in plants. Plant Mol Biol 80:17–36

    Article  CAS  PubMed  Google Scholar 

  • Sun FL, Guo WW, Du JK, Ni ZF, Sun QX, Yao YY (2013) Widespread, abundant, and diverse TE-associated siRNAs in developing wheat grain. Gene 522:1–7

    Article  CAS  PubMed  Google Scholar 

  • Sunkar R, Chinnusamy V, Zhu JH, Zhu JK (2007) Small RNAs as big players in plant abiotic stress responses and nutrient deprivation. Trends Plant Sci 12:301–309

    Article  CAS  PubMed  Google Scholar 

  • Sunkar R, Zhou X, Zheng Y, Zhang W, Zhu JK (2008) Identification of novel and candidate miRNAs in rice by high throughput sequencing. BMC Plant Biol 8:25

    Article  PubMed Central  PubMed  Google Scholar 

  • Tian ET, Jiang YF, Chen LL, Zou J, Liu F, Meng JL (2010) Synthesis of a Brassica trigenomic allohexaploid (B. carinata × B. rapa) de novo and its stability in subsequent generations. Theor Appl Genet 121:1431–1440

    Article  CAS  PubMed  Google Scholar 

  • Van Laere K, Franca SC, Vansteenkiste H, Van Huylenbroeck J, Steppe K, Van Labeke MC (2011) Influence of ploidy level on morphology, growth and drought susceptibility in Spathiphyllum wallisii. Acta Physiol Plant 33:1149–1156

    Article  Google Scholar 

  • Varkonyi-Gasic E, Wu RM, Wood M, Walton EF, Hellens RP (2007) Protocol: a highly sensitive RT-PCR method for detection and quantification of microRNAs. Plant Methods 3:12

    Article  PubMed Central  PubMed  Google Scholar 

  • Vaucheret H (2009) AGO1 homeostasis involves differential production of 21-nt and 22-nt miR168 species by MIR168a and MIR168b. PLoS ONE 4:e6442

    Article  PubMed Central  PubMed  Google Scholar 

  • Wang JL, Tian L, Lee HS, Wei NE, Jiang HM, Watson B, Madling A, Osborn TC, Doerge RW, Comai L, Chen ZJ (2006) Genomewide nonadditive gene regulation in Arabidopsis allotetraploids. Genetics 172:507–517

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wendel JF (2000) Genome evolution in polyploids. Plant Mol Biol 42:225–249

    Article  CAS  PubMed  Google Scholar 

  • Xu YH, Zhong L, Wu XM, Fang XP, Wang JB (2009) Rapid alterations of gene expression and cytosine methylation in newly synthesized Brassica napus allopolyploids. Planta 229:471–483

    Article  CAS  PubMed  Google Scholar 

  • Xu YH, Xu H, Wu XM, Fang XP, Wang JB (2012) Genetic changes following hybridization and genome doubling in synthetic Brassica napus. Biochem Genet 50:616–624

    Article  CAS  PubMed  Google Scholar 

  • Yu X, Wang H, Lu YZ, de Ruiter M, Cariaso M, Prins M, van Tunen A, He YK (2012) Identification of conserved and novel microRNAs that are responsive to heat stress in Brassica rapa. J Exp Bot 63:1025–1038

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhao CZ, Xia H, Yao YY, Frazier TP, Bi YP, Li AQ, Li MJ, Li CS, Zhang BH, Wang XJ (2010) Deep sequencing identifies novel and conserved microRNAs in peanuts (Arachis hypogaea L.). BMC Plant Biol 10:3

    Article  PubMed Central  PubMed  Google Scholar 

  • Zhao Q, Zou J, Meng JL, Mei SY, Wang JB (2013) Tracing the transcriptomic changes in synthetic trigenomic allohexaploids of Brassica using an RNA-Seq approach. PLoS ONE 8:e68883

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (31370258, 31100876, 31070204) and National Found for Fostering Talents of Basic Sciences (J1103513).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianbo Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11103_2014_185_MOESM1_ESM.tif

Supplementary material 1 GO classifications of coherent target genes of up-regulated and down-regulated miRNAs in Brassica hexaploid and B. rapa. The results are summarized in three main categories: cellular component, molecular function, and biological process by GO analysis (TIFF 17969 kb)

11103_2014_185_MOESM2_ESM.tif

Supplementary material 2 GO classifications of coherent target genes of up-regulated and down-regulated miRNAs in Brassica hexaploid and B. carinata. The results are summarized in three main categories: cellular component, molecular function, and biological process by GO analysis (TIFF 18123 kb)

11103_2014_185_MOESM3_ESM.tif

Supplementary material 3 GO classifications of target genes of additive and non-additive miRNAs in Brassica hexaploid. The results are summarized in three main categories: cellular component, molecular function, and biological process by GO analysis (TIFF 17,757 kb)

11103_2014_185_MOESM4_ESM.tif

Supplementary material 4 GO classifications of genes that highly correlated with non-additive siRNA clusters in Brassica hexaploid. The results are summarized in three main categories: cellular component, molecular function, and biological process by GO analysis (TIFF 6771 kb)

Supplementary material 5 (XLS 28 kb)

Supplementary material 6 (DOC 55 kb)

Supplementary material 7 (XLS 178 kb)

Supplementary material 8 (XLS 6762 kb)

Supplementary material 9 (XLS 130 kb)

Supplementary material 10 (XLS 140 kb)

Supplementary material 11 (XLS 78 kb)

Supplementary material 12 (XLS 61 kb)

Supplementary material 13 (XLS 35 kb)

Supplementary material 14 (XLS 48 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shen, Y., Zhao, Q., Zou, J. et al. Characterization and expression patterns of small RNAs in synthesized Brassica hexaploids. Plant Mol Biol 85, 287–299 (2014). https://doi.org/10.1007/s11103-014-0185-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-014-0185-x

Keywords

Navigation