Skip to main content

Advertisement

Log in

Genome-wide expression profiles of seasonal bud dormancy at four critical stages in Japanese apricot

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Dormancy is one of the most important adaptive mechanisms developed by perennial plants. To reveal the comprehensive mechanism of seasonal bud dormancy at four critical stages in Japanese apricot (Prunus persica), we applied Illumina sequencing to study differentially expressed genes (DEGs) at the transcriptional level. As a result, 19,759, 16,375, 19,749 and 20,800 tag-mapped genes were sequenced from libraries of paradormancy (R1), endodormancy (R2), ecodormancy (R3) and dormancy release (R4) stages based on the P. persica genome. Moreover, 6,199, 5,539, and 5,317 genes were differentially expressed in R1 versus R2, R2 versus R3, and R3 versus R4, respectively. Gene Ontology analysis of dormancy-related genes showed that these were mainly related to the cytoplasm, cytoplasmic part metabolism, intracellular metabolism and membrane-bound organelle metabolism. Pathway-enrichment annotation revealed that highly ranked genes were involved in ribosome pathways and protein processing in the endoplasmic reticulum. The results demonstrated that hormone response genes such as auxin, abscisic acid, ethylene and jasmonic acid, as well as zinc finger family protein genes are possibly involved in seasonal bud dormancy in Japanese apricot. The expression patterns of DEGs were verified using real-time quantitative RT-PCR. These results contribute to further understanding of the mechanism of bud dormancy in Japanese apricot.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Arora R, Rowland LJ, Tanino K (2003) Induction and release of bud dormancy in woody perennials: a science comes of age. HortScience 38:911–921

    Google Scholar 

  • Asmann YW, Klee EW, Thompson EA, Perez EA, Middha S, Oberg AL, Therneau TM, Smith DI, Poland GA, Wieben ED, Kocher JA (2009) 3′ tag digital gene expression profiling of human brain and universal reference RNA using Illumina Genome Analyser. BMC Genomics 10:531

    Article  PubMed  Google Scholar 

  • Audic S, Claverie J (1997) The significance of digital gene expression profiles. Genome Res 7:986–995

    PubMed  CAS  Google Scholar 

  • Baba K, Karlberg A, Schmidt J, Schrader J, Hvidsten TR, Bako L, Bhalerao RP (2011) Activity–dormancy transition in the cambial meristem involves stage-specific modulation of auxin response in hybrid aspen. Proc Natl Acad Sci USA 108:3418–3423

    Article  PubMed  CAS  Google Scholar 

  • Benjamini Y, Yekutieli D (2001) The control of the false discovery rate in multiple testing under dependency. Ann Stat 4:1165–1188

    Google Scholar 

  • Bielenberg DG, Wang Y, Li Z, Zhebentyayeva T, Fan S, Reighard GL, Scorza R, Abbott AG (2008) Sequencing and annotation of the evergrowing locus in peach [Prunus persica (L.) Batsch] reveals a cluster of six MADS-box transcription factors as candidate genes for regulation of terminal bud formation. Tree Genet Gen 4:495–507

    Article  Google Scholar 

  • Bogamuwa S, Jang JC (2013) The Arabidopsis tandem CCCH zinc finger proteins AtTZF4, 5 and 6 are involved in light-, abscisic acid- and gibberellic acid-mediated regulation of seed germination. Plant Cell Environ. doi:10.1111/pce.12084.

  • Campbell M, Segear E, Beers L, Knauber D, Suttle J (2008) Dormancy in potato tuber meristems: chemically induced cessation in dormancy matches the natural process based on transcript profiles. Funct Integr Genomic 8:317–328

    Article  CAS  Google Scholar 

  • Chen THH, Howe GT, Bradshaw HD Jr (2002) Molecular genetic analysis of dormancy-related traits in poplars. Weed Sci 50:232–240

    Article  CAS  Google Scholar 

  • Cook JEK, Eriksson ME, Junttila O (2012) The dynamic nature of bud dormancy in trees: environmental control and molecular mechanisms. Plant, Cell Environ 35:1707–1728

    Article  Google Scholar 

  • Crabbe J, Barnola P (1996) A new conceptual approach to bud dormancy in woody plants. In: Lang GA (ed) Plant dormancy: physiology, biochemistry and molecular biology. CAB International, Wallingford, pp 83–113

    Google Scholar 

  • Cutler SR, Rodriguez PL, Finkelstein RR, Abrams SR (2010) Abscisic acid: emergence of a core signaling network. Annu Rev Plant Biol 61:651–679

    Article  PubMed  CAS  Google Scholar 

  • Druart N, Johansson A, Baba K, Schrader J, Sjödin A, Bhalerao RR, Resman L, Trygg J, Moritz T, Bhalerao RP (2007) Environmental and hormonal regulation of the activity-dormancy cycle in the cambial meristem involves stage-specific modulation of transcriptional and metabolic net works. Plant J 50:557–573

    Article  PubMed  CAS  Google Scholar 

  • Eveland AL, Satoh-Nagasawa N, Goldshmidt A, Meyer S, Beatty M, Sakai H, Ware D, Jackson D (2010) Digital gene expression signatures for maize development. Plant Physiol 154:1024–1039

    Article  PubMed  CAS  Google Scholar 

  • Fan S, Bielenberg DG, Zhebentyayeva TN, Reighard GL, Okie WR, Holland D, Abbott AG (2010) Mapping quantitative trait loci associated with chilling requirement, heat requirement and bloom date in peach (Prunus persica). New Phytol 185:917–930

    Article  PubMed  Google Scholar 

  • Faust M, Erez A, Rowland LJ, Wang SY, Norman HA (1997) Bud dormancy in perennial fruit trees: physiological basis for dormancy induction, maintenance, and release. HortScience 32:623–629

    Google Scholar 

  • Feurtado JA, Huang D, Wicki-stordeur L, Hemstock LE, Potentier MS, Tsang EW, Cutler AJ (2011) The Arabidopsis C2H2 zinc finger INDETERMINATE DOMAIN1/ENHYDROUS promotes the transition to germination by regulating light and hormonal signaling during seed maturation. Plant Cell 23:1772–1794

    Article  PubMed  CAS  Google Scholar 

  • Frewen BE, Chen THH, Howe GT, Davis J, Rohde A, Boerjan W, Bradshaw HD (2000) Quantitative trait loci and candidate gene mapping of bud set and bud flush in Populus. Genetics 154:837–845

    PubMed  CAS  Google Scholar 

  • Gao Z, Zhuang W, Wang L, Shao J, Luo X, Cai B, Zhang Z (2012) Evaluation of chilling and heat requirements in Japanese apricot with three models. HortScience 47:1826–1831

    Google Scholar 

  • Graeber K, Nakabayashi K, Miatton E, Leubner-Metzger G, Soppe WJJ (2012) Molecular mechanisms of seed dormancy. Plant, Cell Environ 10:1365–3040

    Google Scholar 

  • Guilfoyle TJ, Hagen G (2007) Auxin response factors. Curr Opin Plant Biol 10:453–460

    Article  PubMed  CAS  Google Scholar 

  • Habu T, Yamane H, Igarashi K, Hamada K, Yano K, Tao R (2012) 454-pyrosequencing of the transcriptome in leaf and flower buds of Japanese apricot (Prunus mume Sieb. et Zucc.) at different dormant stages. J Japan Soc Hort Sci 81:239–250

    Article  CAS  Google Scholar 

  • Hao Q, Zhou X, Sha A, Wang C, Zhou R, Chen S (2011) Identification of genes associated with nitrogen-use efficiency by genome-wide transcriptional analysis of two soybean genotypes. BMC Genomics 12:525

    Article  PubMed  CAS  Google Scholar 

  • Harrison MA, Saunders PF (1975) The abscisic acid content of dormant birch buds. Planta 123:291–298

    Article  CAS  Google Scholar 

  • He Y, Gan S (2004) A novel zinc-finger protein with a proline-rich domain mediates ABA-regulated seed dormancy in Arabidopsis. Plant Mol Biol 54:1–9

    Article  PubMed  CAS  Google Scholar 

  • Hedley PE, Russell JR, Jorgensen L, Gordon S, Morris JA, Hackett CA, Cardle L, Brennan R (2010) Candidate genes associated with bud dormancy release in blackcurrant (Ribes nigrum L.). BMC Plant Biol 10:1471–2229

    Article  Google Scholar 

  • Hoffman DE (2011) Changes in the transcriptome and metabolome during the initiation of growth cessation in hybrid aspens. PhD thesis. Swedish Univ. Ag. Sci., Umeå

  • Horvath DP, Anderson JV, Chao WS, Foley ME (2003) Knowing when to grow: signals regulating bud dormancy. Trends Plant Sci 8:534–540

    Article  PubMed  CAS  Google Scholar 

  • Horvath DP, Chao WS, Suttle JC, Thimmapuram J, Anderson JV (2008) Transcriptome analysis identifies novel responses and potential regulatory genes involved in seasonal dormancy transitions of leafy spurge (Euphorbia esula L.). BMC Genomics 9:536

    Article  PubMed  Google Scholar 

  • Horvath DP, Sung S, Kim D, Chao W, Anderson J (2010) Characterization, expression and function of DORMANCY ASSOCIATED MADS-BOX genes from leafy spurge. Plant Mol Biol 73:169–179

    Article  PubMed  CAS  Google Scholar 

  • Hossain MA, Lee Y, Cho J, Ahn CH, Lee SK, Jeon JS, Kang H, Lee CH, An G, Park PB (2009) The bZIP transcription factor OsABF1 is an ABA responsive element binding factor that enhances abiotic stress signaling in rice. Plant Mol Biol 72:557–566

    Article  Google Scholar 

  • Howe GT, Saruul P, Davis J, Chen THH (2000) Quantitative genetics of bud phenology, frost damage, and winter survival in an F2 family of hybrid poplars. Theor Appl Genet 101:632–642

    Article  Google Scholar 

  • Hunt M, Kaur N, Stromvik M, Vodkin L (2011) Transcript profiling reveals expression differences in wild-type and glabrous soybean lines. BMC Plant Biol 11:145

    Article  PubMed  CAS  Google Scholar 

  • Ibáñez C, Kozarewa I, Johansson M, Ögren E, Rohde A, Eriksson ME (2010) Circadian clock components regulate entry and affect exit of seasonal dormancy as well as winter hardiness in Populus trees. Plant Physiol 153:1823–1833

    Article  PubMed  Google Scholar 

  • Jiménez S, Reighard GL, Bielenberg DG (2010) Gene expression of DAM5 and DAM6 is suppressed by chilling temperatures and inversely correlated with bud break rate. Plant Mol Biol 73:157–167

    Article  PubMed  Google Scholar 

  • Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M, Itoh M, Katayama T, Kawashima S, Okuda S, Tokimatsu T (2008) KEGG for linking genomes to life and the environment. Nucleic Acids Res 36:D480–D484

    Article  PubMed  CAS  Google Scholar 

  • Kayal WE, Allen CCG, Ju CJT, Adams E, King-Jones S, Zaharia LI, Abrams SR, Cooke JEK (2011) Molecular events of apical bud formation in white spruce, Picea glauca. Plant, Cell Environ 34:480–500

    Article  Google Scholar 

  • Keilin T, Qunpang X, Venkateswari J, Halaly T, Crane O, Keren A, Ogrodovitch A, Ophir R, Volpin H, Galbraith D, Or E (2007) Digital expression profiling of a grape-bud EST collection leads to new insight into molecular events during grape-bud dormancy release. Plant Sci 173:446–457

    Article  CAS  Google Scholar 

  • Laity JH, Lee BM, Wright PE (2001) Zinc finger proteins: new insights into structural and functional diversity. Curr Opin Struct Biol 11:39–46

    Article  PubMed  CAS  Google Scholar 

  • Lang GA, Early JD, Martin GC, Darnell RL (1987) Endo- para- and eco-dormancy: physiological terminology and classification for dormancy research. HortScience 22:371–377

    Google Scholar 

  • Lee SJ, Jung HJ, Kang H, Kim SY (2012) Arabidopsis zinc finger proteins AtC3H49/AtTZF3 and AtC3H20/AtTZF2 are involved in ABA and JA responses. Plant Cell Physiol 53:673–689

    Article  PubMed  CAS  Google Scholar 

  • Leida C, Terol J, Marti G, Agusti M, Llácer G, Badenes ML, Ríos G (2010) Identification of genes associated with bud dormancy release in Prunus persica by suppression subtractive hybridization. Tree Physiol 30:655–666

    Article  PubMed  CAS  Google Scholar 

  • Leida C, Conesa A, Llácer G, Badenes ML, Ríos G (2012) Histone modifications and expression of DAM6 gene in peach are modulated during bud dormancy release in a cultivar-dependent manner. New Phytol 193:67–80

    Article  PubMed  CAS  Google Scholar 

  • Leseberg CH, Li A, Kang H, Duvall M, Mao L (2006) Genome-wide analysis of the MADS-box gene family in Populus trichocarpa. Gene 378:84–94

    Article  PubMed  CAS  Google Scholar 

  • Li Z, Reighard GL, Abbott AG, Bielenberg DG (2009) Dormancy-associated MADS genes from the EVG locus of peach [Prunus persica (L.) Batsch] have distinct seasonal and photoperiodic expression patterns. J Exp Bot 60:3521–3530

    Article  PubMed  CAS  Google Scholar 

  • Li ZM, Zhang JZ, Mei L, Deng XX, Hu CG, Yao JL (2010) PtSVP, an SVP homolog from trifoliate orange (Poncirus trifoliata L. Raf.), shows seasonal periodicity of meristem determination and affects flower development in transgenic Arabidopsis and tobacco plants. Plant Mol Biol 74:129–142

    Article  PubMed  Google Scholar 

  • Li YJ, Fu YR, Huang JG, Wu CA, Zheng CC (2011) Transcript profiling during the early development of the maize brace root via Solexa sequencing. FEBS J 278:156–166

    Article  PubMed  CAS  Google Scholar 

  • Liu PP, Koizuka N, Martin RC, Nonogaki H (2005) The BME3 (Blue Micropylar End 3) GATA zinc finger transcription factor is a positive regulator of Arabidopsis seed germination. Plant J 44:960–971

    Article  PubMed  CAS  Google Scholar 

  • Lorenzo O, Piqueras R, Sánchez-Serrano JJ, Solano R (2003) ETHYLENE RESPONSE FACTOR1 integrates signals from ethylene and jasmonate pathways in plant defense. Plant Cell 15:165–178

    Article  PubMed  CAS  Google Scholar 

  • Mardis ER (2008) The impact of next-generation sequencing technology on genetics. Trends Genet 24:133–141

    Article  PubMed  CAS  Google Scholar 

  • Marioni JC, Mason CE, Mane SM, Stephens M, Gilad Y (2008) RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays. Genome Res 18:1509–1517

    Article  PubMed  CAS  Google Scholar 

  • Mazzitelli L, Hancock RD, Haupt S, Walker PG, Pont SDA, McNicol J, Cardle L, Morris J, Viola R, Brennan R, Hedley PE, Taylor MA (2007) Co-ordinated gene expression during phases of dormancy release in raspberry (Rubus idaeus L.) buds. J Exp Bot 58:1035–1045

    Article  PubMed  CAS  Google Scholar 

  • Meyers BC, Tej SS, Vu TH, Haudenschild CD, Agrawal V, Edberg SB, Ghazal H, Decola S (2004a) The use of MPSS for whole-genome transcriptional analysis in Arabidopsis. Genome Res 14:1641–1653

    Article  PubMed  CAS  Google Scholar 

  • Meyers BC, Vu TH, Tej SS, Ghazal H, Matvienko M, Agrawal V, Ning J, Haudenschild CD (2004b) Analysis of the transcriptional complexity of Arabidopsis thaliana by massively parallel signature sequencing. Nat Biotechnol 22:1006–1011

    Article  PubMed  CAS  Google Scholar 

  • Morrissy AS, Morin RD, Delaney A, Zeng T, McDonald H, Jones S, Zhao Y, Hirst M, Marra MA (2009) Next-generation tag sequencing for cancer gene expression profiling. Genome Res 19:1825–1835

    Article  PubMed  CAS  Google Scholar 

  • Moyle R, Schrader J, Stenberg A, Olsson O, Saxena S, Sandberg G, Bhalerao RP (2002) Environmental and auxin regulation of wood formation involves members of the Aux/IAA gene family in hybrid aspen. Plant J 31:675–685

    Article  PubMed  CAS  Google Scholar 

  • Nagpal P, Ellis CM, Weber H, Ploense SE, Barkawi LS, Guilfoyle TJ, Hagen G, Alonso JM, Cohen JD, Farmer EE, Ecker JR, Reed JW (2005) Auxin response factors ARF6 and ARF8 promote jasmonic acid production and flower maturation. Development 132:4107–4118

    Article  PubMed  CAS  Google Scholar 

  • Nambara E, Okamoto M, Tatematsu K, Yano R, Seo M, Kamiya Y (2010) Abscisic acid and the control of seed dormany and germination. Seed Sci Res 20:55–67

    Article  CAS  Google Scholar 

  • Olsen JE (2010) Light and temperature sensing and signaling in induction of bud dormancy in woody plants. Plant Mol Biol 73:37–47

    Article  PubMed  CAS  Google Scholar 

  • Ophir R, Pang X, Halaly T, Venkateswari J, Lavee S, Galbraith D, Or E (2009) Gene-expression profiling of grape bud response to two alternative dormancy-release stimuli expose possible links between impaired mitochondrial activity, hypoxia, ethylene-ABA interplay and cell enlargement. Plant Mol Biol 71:403–423

    Article  PubMed  CAS  Google Scholar 

  • Pacey MT, Scott K, Ablett E, Tingey S, Ching A, Henry R (2003) Genes associated with the end of dormancy in grapes. Funct Integr Genomic 3:144–152

    Article  Google Scholar 

  • Pang X, Halaly T, Crane O, Keilin T, Keren-Keiserman A, Ogrodovitch A, Galbraith D, Or E (2007) Involvement of calcium signaling in dormancy release of grape buds. J Exp Bot 12:3249–3262

    Article  Google Scholar 

  • Poovaiah BW, Reddy AS (1987) Calcium messenger system in plants. CRC Crit Rev Plant Sci 6:47–103

    Article  PubMed  CAS  Google Scholar 

  • Poovaiah BW, Reddy AS (1993) Calcium and signal transduction in plants. CRC Crit Rev Plant Sci 12:185–211

    PubMed  CAS  Google Scholar 

  • Qin Q, Kaas Q, Zhang C, Zhou L, Luo X, Zhou M, Sun X, Zhang L, Paek K-Y, Cui Y (2012) The cold awakening of Doritaenopsis ‘Tinny Tender’ orchid flowers: the role of leaves in cold-induced bud dormancy release. J Plant Growth Regul 31:139–155

    Article  CAS  Google Scholar 

  • Reddy AS (2001) Calcium: silver bullet in signaling. Plant Sci 160:381–404

    Article  PubMed  CAS  Google Scholar 

  • Rinne PLH, Welling A, Vahala J, Ripel L, Ruonala R, Kangasjärvi J, Schoot C (2011) Chilling of dormant buds hyperinduces FLOWERING LOCUS T and recruits GA-inducible 1,3-β-glucanases to reopen signal conduits and release dormancy in Populus. Plant Cell 23:130–146

    Article  PubMed  CAS  Google Scholar 

  • Rohde A, Bhalerao RP (2007) Plant dormancy in the perennial context. Trends Plant Sci 12:217–223

    Article  PubMed  CAS  Google Scholar 

  • Rohde A, Prinsen E, Rycke RD, Engler G, Montagu MV, Boerjan W (2002) PtABI3 impinges on the growth and differentiation of embryonic leaves during bud set in poplar. Plant Cell 14:1885–1901

    Article  PubMed  CAS  Google Scholar 

  • Rohde A, Ruttink T, Hostyn V, Sterck L, Driessche KV, Boerjan W (2007) Gene expression during the induction, maintenance, and release of dormancy in apical buds of poplar. J Exp Bot 58:4047–4060

    Article  PubMed  CAS  Google Scholar 

  • Ruonala R, Rinne PLH, Bangour M, Moritz T, Tuominen H, Kangasjarvi J (2006) Transitions in the functioning of the shoot apical meristem in birch (Betula pendula) involve ethylene. Plant J 46:628–640

    Article  PubMed  CAS  Google Scholar 

  • Ruttink T, Arend M, Morreel K, Storme V, Rombauts S, Fromm J, Bhalerao RP, Boerjan W, Rohde A (2007) A molecular timetable for apical bud formation and dormancy induction in poplar. Plant Cell 19:2370–2390

    Article  PubMed  CAS  Google Scholar 

  • Santamaría ME, Rodríguez R, Cañal MJ, Toorop PE (2011) Transcriptome analysis of chestnut (Castanea sativa) tree buds suggests a putative role for epigenetic control of bud dormancy. Ann Bot 108:485–498

    Article  PubMed  Google Scholar 

  • Sasaki R, Yamane H, Ooka T, Jotatsu H, Kitamura Y, Akagi T, Tao R (2011) Functional and expressional analyses of PmDAM genes associated with endodormancy in Japanese apricot. Plant Physiol 157:485–497

    Article  PubMed  CAS  Google Scholar 

  • Schrader J, Baba K, May ST, Palme K, Bennet M, Balherao RP, Sandberg G (2003) Polar auxin transport in the wood-forming tissues of hybrid aspen is under simultaneous control of developmental and environmental signals. Proc Natl Acad Sci USA 100:10096–10101

    Article  PubMed  CAS  Google Scholar 

  • Simon SA, Zhai J, Nandety RS, McCormick KP, Zeng J, Mejia D, Meyers BC (2009) Short-read sequencing technologies for transcriptional analyses. Plant Biol 60:305–333

    Article  CAS  Google Scholar 

  • Sreekantan L, Mathiason K, Grimplet J, Schlauch K, Dickerson JA, Fennell AY (2010) Differential floral development and gene expression in grapevines during long and short photoperiods suggests a role for floral genes in dormancy transitioning. Plant Mol Biol 73:191–205

    Article  PubMed  CAS  Google Scholar 

  • Suttle JC (1995) Postharvest changes in endogenous ABA Levels and ABA metabolism in relation to dormancy in potato tubers. Physiol Plant 95:233–240

    Article  CAS  Google Scholar 

  • t Hoen PA, Ariyurek Y, Thygesen HH, Vreugdenhil E, Vossen RH, de Menezes RX, Boer JM, van Ommen GJ, den Dunnen JT (2008) Deep sequencing-based expression analysis shows major advances in robustness, resolution and inter-lab portability over five microarray platforms. Nucleic Acids Res 36:e141

    Article  Google Scholar 

  • Tattersall EAR, Grimplet J, DeLuc L, Wheatley MD, Vincent D, Osborne C, Ergül A, Lomen E, Blank RR, Schlauch KA, Cushman JC, Cramer GR (2007) Transcript abundance profiles reveal larger and more complex responses of grapevine to chilling compared to osmotic and salinity stress. Funct Integr Genomics 7:317–333

    Article  PubMed  CAS  Google Scholar 

  • Tong Z, Gao Z, Wang F, Zhou J, Zhang Z (2009) Selection of reliable reference genes for gene expression studies in peach using real-time PCR. BMC Mol Biol 10:71

    Article  PubMed  Google Scholar 

  • Viémont J, Crabbé J (2000) Growth cycle and dormancy in plants. CABI, Belgium

    Google Scholar 

  • Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nature Rev Gen 10:57–63

    Article  CAS  Google Scholar 

  • Wei M, Song M, Fan S, Yu S (2013) Transcriptomic analysis of differentially expressed genes during anther development in genetic male sterile and wild type cotton by digital gene-expression profiling. BMC Genomics 14:97

    Article  PubMed  CAS  Google Scholar 

  • Wright STC (1975) Seasonal changes in levels of free and bound abscisic acid in blackcurrant (Ribes nigrum) buds and beech (Fagus sylvatica) buds. J Exp Bot 26:161–174

    Article  CAS  Google Scholar 

  • Wu RM, Walton EF, Richardson AC, Wood M, Hellens RP, Varkonyi-Gasic E (2012) Conservation and divergence of four kiwifruit SVP-like MADS-box genes suggest distinct roles in kiwifruit bud dormancy and flowering. J Exp Bot 63:797–807

    Article  PubMed  CAS  Google Scholar 

  • Xiao L, Wang H, Wan P, Kuang T, He Y (2011) Genome-wide transcriptome analysis of gametophyte development in Physcomitrella patens. BMC Plant Biol 11:177

    Article  PubMed  CAS  Google Scholar 

  • Yamane H, Kasiwa Y, Kakehei E, Yonemori K, Mori H, Hayashi K, Iwamoto K, Tao R, Kataoka I (2006) Differential expression of dehydrin in flower buds of two Japanese apricot cultivars requiring different chilling requirements for bud break. Tree Physiol 26:1559–1563

    Article  PubMed  CAS  Google Scholar 

  • Yamane H, Kashiwa Y, Ooka T, Tao R, Yonemori K (2008) Suppression subtractive hybridization and differential screening reveals endodormancy-associated expression of an SVP/AGL24-type MADS-box gene in lateral vegetative buds of Japanese apricot. J Am Soc Hort Sci 133:708–716

    Google Scholar 

  • Yamane H, Ooka T, Jotatsu H, Hosaka Y, Sasaki R, Tao R (2011a) Expressional regulation of PpDAM5 and PpDAM6, peach (Prunus persica) dormancy-associated MADS-box genes, by low temperature and dormancy-breaking reagent treatment. J Exp Bot 62:3481–3488

    Article  PubMed  CAS  Google Scholar 

  • Yamane H, Ooka T, Jotatsu H, Sasaki R, Tao R (2011b) Expression analysis of PpDAM5 and PpDAM6 during flower bud development in peach (Prunus persica). Sci Hortic 129:844–848

    Article  CAS  Google Scholar 

  • Zhang QX, Chen WB, Sun LD, Zhao FY, Huang BQ, Yang WR, Tao Y, Wang J, Yuan ZQ, Fan GY, Xing Z, Han CL, Pan HT, Zhong X, Shi WF, Liang XM, Du DL, Sun FM, Xu ZD, Hao RJ, Lv T, Lv YM, Zheng ZQ, Sun M, Luo L, Cai M, Gao Y, Wang JY, Yin Y, Xu X, Cheng TR, Wang J (2012) The genome of Prunus mume. Nat Commun 3:1318

    Article  PubMed  Google Scholar 

  • Zhang S, Xiao Y, Zhao J, Wang F, Zheng Y (2013) Digital gene expression analysis of early root infection resistance to Sporisorium reilianum f. sp. zeae in maize. Mol Genet Genomics 288:21–37

    Article  PubMed  CAS  Google Scholar 

  • Zhuang WB, Shi T, Gao ZH, Zhang Z, Zhang JY (2013) Differential expression of proteins associated with seasonal bud dormancy at four critical stages in Japanese apricot. Plant Biol 15:233–242

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the Natural Science Foundation of Jiangsu Province (BK2011642) and the National Science Foundation of China (31101526) for providing financial support, as well as the Jiangsu Province Agriculture Independent Innovation System Project [CX(12)2011] for funding part of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhihong Gao.

Additional information

Wenjun Zhong and Zhihong Gao contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1 Genes selected for real-time RT-PCR. (DOC 40 kb)

Table S2 Auxin-related genes changed by two-fold or more in R1 vs. R2, R2 vs. R3 and R3 vs. R4 libraries. (DOC 48 kb)

11103_2013_86_MOESM3_ESM.doc

Table S3 Ethylene-related genes changed by two-fold or more in R1 vs. R2, R2 vs. R3 and R3 vs. R4 libraries. (DOC 35 kb)

Table S4 ABA-related genes changed by two-fold or more in R1 vs. R2, R2 vs. R3 and R3 vs. R4 libraries. (DOC 35 kb)

Table S5 JA-related genes changed by two-fold or more in R1 vs. R2, R2 vs. R3 and R3 vs. R4 libraries. (DOC 27 kb)

11103_2013_86_MOESM6_ESM.doc

Table S6 Gibberellin-related genes changed by two-fold or more in R1 vs. R2, R2 vs. R3 and R3 vs. R4 libraries. (DOC 27 kb)

11103_2013_86_MOESM7_ESM.doc

Table S7 Expression of DAMs genes changed by two-fold or more in R1 vs. R2, R2 vs. R3 and R3 vs. R4 libraries. (DOC 34 kb)

11103_2013_86_MOESM8_ESM.doc

Table S8 Zinc finger family protein genes changed by eight-fold or more in R1 vs. R2, R2 vs. R3 and R3 vs. R4 libraries. (DOC 30 kb)

11103_2013_86_MOESM9_ESM.doc

Table S9 Calcium-related genes changed by five-fold or more in R1 vs. R2, R2 vs. R3 and R3 vs. R4 libraries. (DOC 39 kb)

11103_2013_86_MOESM10_ESM.tif

Fig. S1 Comparison of gene expression levels between R1 vs. R2, R2 vs. R3 and R3 vs. R4. To compare gene expression levels, each library was normalised to one million tags. Red dots represent transcripts more prevalent in the front library, green dots show those present at a lower frequency in the front library and blue dots indicate transcripts that did not change significantly. The parameters FDR <0.001 and log2 ratio >1 were used as the threshold to judge the significance of differences in gene expression. Fig. S1a: Gene expression level in R1 vs. R2. (TIFF 277 kb)

Fig. S1b: Gene expression level in R2 vs. R3. (TIFF 273 kb)

Fig. S1c: Gene expression level in R3 vs. R4. (TIFF 270 kb)

11103_2013_86_MOESM13_ESM.png

Fig. S2 Differentially expressed tags in R1 vs. R2, R2 vs. R3 and R3 vs. R4 libraries. The x-axis represents the fold-change in differentially expressed unique tags in each library. The y-axis represents the number of unique tags (log10). Differentially accumulating unique tags with a five-fold difference between the libraries are shown in the red region. The blue and green regions represent unique tags that are up- or down-regulated more than five-fold in each library, respectively. Fig. S2a: Differentially expressed tags in R1 vs. R2. (PNG 32 kb)

Fig. S2b: Differentially-expressed tags in R2 vs. R3. (PNG 32 kb)

Fig. S2c: Differentially expressed tags in R3 vs. R4. (PNG 32 kb)

11103_2013_86_MOESM16_ESM.tif

Fig. S3 Saturation evaluation of differential expression. Fig. S3a: sequencing saturation analysis of paradormancy. (TIFF 183 kb)

Fig. S3b: sequencing saturation analysis of endodormancy. (TIFF 185 kb)

Fig. S3c: sequencing saturation analysis of ecodormancy. (TIFF 183 kb)

Fig. S3d: sequencing saturation analysis of dormancy release. (TIFF 185 kb)

11103_2013_86_MOESM20_ESM.doc

Fig. S4 Numbers of up-regulated and down-regulated differentially expressed genes between different samples. (DOC 23 kb)

11103_2013_86_MOESM21_ESM.doc

Fig. S5 Histogram illustrating Gene Ontology functional enrichment analysis of differentially expressed genes. Fig. S5a: GO functional enrichment analysis of R1 vs. R2. (DOC 125 kb)

Fig. S5b: GO functional enrichment analysis of R2 vs. R3. (DOC 137 kb)

Fig. S5c: GO functional enrichment analysis of R3 vs. R4. (DOC 134 kb)

Fig. S6 Histogram showing pathway enrichment analysis for differentially expressed genes. (DOC 133 kb)

11103_2013_86_MOESM25_ESM.tif

Fig. S7 The expression levels of DAM3, DAM5 and DAM6 genes in R1, R2, R3 and R4, respectively. The x-axis indicates the different genes. The y-axis shows the expression level as determined by DGE (The results of tag mapping based on the Prunus persica genome). (TPM: number of transcripts per million clean tags). (TIFF 81 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhong, W., Gao, Z., Zhuang, W. et al. Genome-wide expression profiles of seasonal bud dormancy at four critical stages in Japanese apricot. Plant Mol Biol 83, 247–264 (2013). https://doi.org/10.1007/s11103-013-0086-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-013-0086-4

Keywords

Navigation