Skip to main content
Log in

Alternative splicing is required for RCT1-mediated disease resistance in Medicago truncatula

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

RCT1 is a TIR-NBS-LRR-type resistance (R) gene in Medicago truncatula that confers resistance to multiple races of Colletotrichum trifolii, a hemi-biotrophic fungal pathogen that causes anthracnose disease in Medicago and other closely related legumes. RCT1 undergoes alternative splicing at both coding and 3′-untranslated regions, thereby producing multiple transcript variants in its expression profile. Alternative splicing of RCT1 in the coding region results from the retention of intron 4. Because intron 4 lies downstream of the LRR-encoding exons and contains an in-frame stop codon, the alternative transcript is predicted to encode a truncated protein consisting of the entire portion of the TIR, NBS, and LRR domains but lacks the C-terminal domain of the full-length RCT1 protein encoded by the regular transcript. Here we provide evidence that the RCT1-mediated disease resistance requires the combined presence of the regular and alternative transcripts. Neither the regular nor the alternative RCT1 transcript alone is sufficient to confer resistance against the pathogen. This study, in addition to the reports on the tobacco N and Arabidopsis RPS4 genes, adds another significant example showing the involvement of alternative splicing in R gene-mediated plant immunity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aarts N, Metz M, Holub E, Staskawicz BJ, Daniels MJ, Parker JE (1998) Different requirements for EDS1 and NDR1 by disease resistance genes define at least two R gene-mediated signaling pathways in Arabidopsis. Proc Natl Acad Sci USA 95:10306–10311

    Article  PubMed  CAS  Google Scholar 

  • Ayliffe MA, Frost DV, Finnegan EJ, Lawrence GJ, Anderson PA, Ellis JG (1999) Analysis of alternative transcripts of the flax L6 rust resistance gene. Plant J 17:287–292

    Article  PubMed  CAS  Google Scholar 

  • Bhattacharjee S, Halane MK, Kim SH, Gassmann W (2011) Pathogen effectors target Arabidopsis EDS1 and alter its interactions with immune regulators. Science 334:1405–1408

    Article  PubMed  CAS  Google Scholar 

  • Brett D, Pospisil H, Valcárcel J, Reich J, Bork P (2002) Alternative splicing and genome complexity. Nat Genet 30:29–30

    Article  PubMed  CAS  Google Scholar 

  • Dinesh-Kumar SP, Baker BJ (2000) Alternatively spliced N resistance gene transcripts: their possible role in tobacco mosaic virus resistance. Proc Natl Acad Sci USA 97:1908–1913

    Article  PubMed  CAS  Google Scholar 

  • Gassmann W, Hinsch ME, Staskawicz BJ (1999) The Arabidopsis RPS4 bacterial-resistance gene is a member of the TIR-NBS-LRR family of disease-resistance genes. Plant J 20:265–277

    Article  PubMed  CAS  Google Scholar 

  • Heidrich K, Wirthmueller L, Tasset C, Pouzet C, Deslandes L, Parker JE (2011) Arabidopsis EDS1 connects pathogen effector recognition to cell compartment-specific immune responses. Science 334:1401–1404

    Article  PubMed  CAS  Google Scholar 

  • Helliwell C, Waterhouse P (2003) Constructs and methods for high-throughput gene silencing in plants. Methods 30:289–295

    Article  PubMed  CAS  Google Scholar 

  • Hu G, deHart AK, Li Y, Ustach C, Handley V, Navarre R, Hwang CF, Aegerter BJ, Williamson VM, Baker B (2005) EDS1 in tomato is required for resistance mediated by TIR-class R genes and the receptor-like R gene Ve. Plant J 42:376–391

    Article  PubMed  CAS  Google Scholar 

  • Jordan T, Schornack S, Lahaye T (2002) Alternative splicing of transcripts encoding Toll-like plant resistance proteins—what’s the functional relevance to innate immunity? Trends Plant Sci 7:392–398

    Article  PubMed  CAS  Google Scholar 

  • Kazan K (2003) Alternative splicing and proteome diversity in plants: the tip of the iceberg has just emerged. Trends Plant Sci 8:468–471

    Article  PubMed  CAS  Google Scholar 

  • Lawrence GJ, Finnegan EJ, Ayliffe MA, Ellis JG (1995) The L6 gene for flax rust resistance is related to the Arabidopsis bacterial resistance gene RPS2 and the tobacco viral resistance gene N. Plant Cell 7:1195–1206

    PubMed  CAS  Google Scholar 

  • Le Hir H, Nott A, Moore MJ (2003) How introns influence and enhance eukaryotic gene expression. Trends Biochem Sci 28:215–220

    Article  PubMed  Google Scholar 

  • Liu Y, Schiff M, Marathe R, Dinesh-Kumar SP (2002) Tobacco Rar1, EDS1 and NPR1/NIM1 like genes are required for N-mediated resistance to tobacco mosaic virus. Plant J 30:415–429

    Article  PubMed  CAS  Google Scholar 

  • Marquez Y, Brown JW, Simpson C, Barta A, Kalyna M (2012) Transcriptome survey reveals increased complexity of the alternative splicing landscape in Arabidopsis. Genome Res 22:1184–1195

    Article  PubMed  CAS  Google Scholar 

  • Moabbi AM, Agarwal N, El Kaderi B, Ansari A (2012) Role for gene looping in intron-mediated enhancement of transcription. Proc Natl Acad Sci USA 109:8505–8510

    Article  PubMed  CAS  Google Scholar 

  • Nilsen TW, Graveley BR (2010) Expansion of the eukaryotic proteome by alternative splicing. Nature 463:457–463

    Article  PubMed  CAS  Google Scholar 

  • Pan Q, Shai O, Lee LJ, Frey BJ, Blencowe BJ (2008) Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat Genet 40:1413–1415

    Article  PubMed  CAS  Google Scholar 

  • Peart JR, Cook G, Feys BJ, Parker JE, Baulcombe DC (2002) An EDS1 orthologue is required for N-mediated resistance against tobacco mosaic virus. Plant J 29:569–579

    Article  PubMed  CAS  Google Scholar 

  • Samac DA, Austin-Phillips S (2006) Alfalfa (Medicago sativa L.). Methods Mol Biol 343:301–311

    PubMed  Google Scholar 

  • Staiger D, Korneli C, Lummer M, Navarro L (2013) Emerging role for RNA-based regulation in plant immunity. New Phytol 197:394–404

    Article  PubMed  CAS  Google Scholar 

  • Syed NH, Kalyna M, Marquez Y, Barta A, Brown JW (2012) Alternative splicing in plants-coming of age. Trends Plant Sci 17:616–623

    Article  PubMed  CAS  Google Scholar 

  • Tan X, Meyers BC, Kozik A, West MA, Morgante M, St Clair DA, Bent AF, Michelmore RW (2007) Global expression analysis of nucleotide binding site-leucine rich repeat-encoding and related genes in Arabidopsis. BMC Plant Biol 7:56

    Article  PubMed  Google Scholar 

  • Whitham S, Dinesh-Kumar SP, Choi D, Hehl R, Corr C, Baker B (1994) The product of the tobacco mosaic virus resistance gene N: similarity to toll and the interleukin-1 receptor. Cell 78:1101–1115

    Article  PubMed  CAS  Google Scholar 

  • Xu S, Zhang Z, Jing B, Gannon P, Ding J, Xu F, Li X, Zhang Y (2011) Transportin-SR is required for proper splicing of resistance genes and plant immunity. PLoS Genet 7(6):e1002159

    Article  PubMed  CAS  Google Scholar 

  • Xu F, Xu S, Wiermer M, Zhang Y, Li X (2012) The cyclin L homolog MOS12 and the MOS4-associated complex are required for the proper splicing of plant resistance genes. Plant J 70:916–928

    Article  PubMed  CAS  Google Scholar 

  • Yang S, Gao M, Deshpande S, Lin S, Roe BA, Zhu H (2007) Genetic and physical localization of an anthracnose resistance gene in Medicago truncatula. Theor Appl Genet 116:45–52

    Article  PubMed  CAS  Google Scholar 

  • Yang S, Gao M, Xu C, Gao J, Deshpande S, Lin S, Roe BA, Zhu H (2008) Alfalfa benefits from Medicago truncatula: the RCT1 gene from M. truncatula confers broad-spectrum resistance to anthracnose in alfalfa. Proc Natl Acad Sci USA 105:12164–12169

    Article  PubMed  CAS  Google Scholar 

  • Zhang XC, Gassmann W (2003) RPS4-mediated disease resistance requires the combined presence of RPS4 transcripts with full-length and truncated open reading frames. Plant Cell 15:2333–2342

    Article  PubMed  CAS  Google Scholar 

  • Zhang XC, Gassmann W (2007) Alternative splicing and mRNA levels of the disease resistance gene RPS4 are induced during defense responses. Plant Physiol 145:1577–1587

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Dorey S, Swiderski M, Jones JD (2004) Expression of RPS4 in tobacco induces an AvrRps4-independent HR that requires EDS1, SGT1 and HSP90. Plant J 40:213–224

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by United States Department of Agriculture-National Research Initiative Competitive Grants Program Grants 2005-35301-15697 and 2005-35300-15461 (to H.Z.). This article is published with the approval of the Director of the Kentucky Agricultural Experiment Station.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongyan Zhu.

Additional information

Fang Tang and Shengming Yang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tang, F., Yang, S., Gao, M. et al. Alternative splicing is required for RCT1-mediated disease resistance in Medicago truncatula . Plant Mol Biol 82, 367–374 (2013). https://doi.org/10.1007/s11103-013-0068-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-013-0068-6

Keywords

Navigation