Skip to main content
Log in

Genetic and physical localization of an anthracnose resistance gene in Medicago truncatula

  • Original paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Anthracnose of alfalfa, caused by the fungal pathogen Colletotrichum trifolii, is one of the most destructive diseases of alfalfa worldwide. An improved understanding of the genetic and molecular mechanisms underlying host resistance will facilitate the development of resistant alfalfa cultivars, thus providing the most efficient and environmentally sound strategy to control alfalfa diseases. Unfortunately, cultivated alfalfa has an intractable genetic system because of its tetrasomic inheritance and out-crossing nature. Nevertheless, the model legume Medicago truncatula, a close relative of alfalfa, has the potential to serve as a surrogate to map and clone the counterparts of agronomically important genes in alfalfa—particularly, disease resistance genes against economically important pathogens. Here we describe the high-resolution genetic and physical mapping of RCT1, a host resistance gene against C. trifolii race 1 in M. truncatula. We have delimited the RCT1 locus within a physical interval spanning ∼200 kb located on the top of M. truncatula linkage group 4. RCT1 is part of a complex locus containing numerous genes homologous to previously characterized TIR-NBS-LRR type resistance genes. The result presented in this paper will facilitate the positional cloning of RCT1 in Medicago.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abad L, Wolters P, Stucker D, Davis P (2006) Advances in anthracnose stalk rot resistance. The fifth national IPM symposium, “delivering on a promise”. (http://www.ipmcenters.org/ipmsymposiumv/posters/037.pdf)

  • Allen SJ, Barnes GL, Caddel JL (1982) A new race of Colletotrichum trifolii on alfalfa in Oklahoma. Plant Dis 66:922–924

    Article  Google Scholar 

  • Ariss JJ, Rhodes LH (2006) A new Colletotrichum trifolii race identified in Ohio. Phytopathology 96:S6

    Google Scholar 

  • Barnes DK, Ostazeski SA, Schillinger JA, Hanson CH (1969) Effect of anthracnose (Colletotrichum trifolii) infection on yield, stand and vigor of alfalfa. Crop Sci 9:344–346

    Article  Google Scholar 

  • Bateman A, Coin L, Durbin R, Finn RD, Hollich V, Griffiths-Jones S, Khanna A, Marshall M, Moxon S, Sonnhammer EL, Studholme DJ, Yeats C, Eddy SR (2004) The Pfam protein families database. Nucleic Acids Res 32:D138–141

    Article  PubMed  CAS  Google Scholar 

  • Cannon SB, Sterck L, Rombauts S, Sato S, Cheung F, Gouzy J, Wang X, Mudge J, Vasdewani J, Schiex T, Spannagl M, Monaghan E, Nicholson C, Humphray SJ, Schoof H, Mayer KF, Rogers J, Quetier F, Oldroyd GE, Debelle F, Cook DR, Retzel EF, Roe BA, Town CD, Tabata S, Van de Peer Y, Young ND (2006) Legume genome evolution viewed through the Medicago truncatula and Lotus japonicus genomes. Proc Natl Acad Sci USA 103:14959–14964

    Article  PubMed  CAS  Google Scholar 

  • Choi HK, Kim D, Uhm T, Limpens E, Lim H, Mun JH, Kalo P, Varma Penmetsa R, Seres A, Kulikova O, Roe BA, Bisseling T, Kiss GB, Cook DR (2004) A sequence-based genetic map of Medicago truncatula and comparison of marker colinearity with M. sativa. Genetics 166:1463–1502

    Article  PubMed  CAS  Google Scholar 

  • Churchill ACL, Baker CJ, O’Neill NR, Elgin JH Jnr (1988) Development of Colletotrichum trifolii race 1 and race 2 on alfalfa clones resistant and susceptible to anthracnose. Can J Bot 66:75–81

    Google Scholar 

  • Cook DR (1999) Medicago truncatula—a model in the making! Curr Opin Plant Biol 2:301–304

    Article  PubMed  CAS  Google Scholar 

  • Dickman DB (2000) Signal exchange during Colletotrichum trifolii—alfalfa interactions. In: Colletotrichum:host specificity, pathology, and host–pathogen interaction. The American Phytopathological Society, St. Paul

  • Dickman MB, Ha YS, Yang Z, Adams B, Huang C (2003) A protein kinase from Colletotrichum trifolii is induced by plant cutin and is required for appressorium formation. Mol Plant Microbe Interact 16:411–421

    Article  PubMed  CAS  Google Scholar 

  • Elgin JH Jr, Ostazeski SA (1985) Inheritance of resistance to race 1 and race 2 anthracnose in Arc-1 and Saranac AR alfalfa. Crop Sci 25:861–865

    Article  Google Scholar 

  • Esquerré-Tugayé MT, Mazau D, Parthe JP, Lafitte C, Touzé A (1992) Mechanisms of resistance to Colletotrichum species. In: Bailey JA, Jeger MJ (eds) Colletotrichum: biology, pathology, and control. CAB International, Wallingford

    Google Scholar 

  • Ferrier-Cana E, Geffroy V, Macadre C, Creusot F, Imbert-Bollore P, Sevignac M, Langin T (2003) Characterization of expressed NBS-LRR resistance gene candidates from common bean. Theor Appl Genet 106:251–261

    PubMed  CAS  Google Scholar 

  • Hulbert SH, Webb CA, Smith SM, Sun Q (2001) Resistance gene complexes: evolution and utilization. Annu Rev Phytopathol 39:285–312

    Article  PubMed  CAS  Google Scholar 

  • Kamphuis LG, Williams AH, D’Souza NK, Pfaff T, Ellwood SR, Groves EJ, Singh KB, Oliver RP, Lichtenzveig J (2007) The Medicago truncatula reference accession A17 has an aberrant chromosomal configuration. New Phytol 174:299–303

    Article  PubMed  CAS  Google Scholar 

  • Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newburg L (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181

    Article  PubMed  CAS  Google Scholar 

  • Mackie JM, Musial JM, O’Neill, Irwin JAG (2003) Pathogenic specialisation within Colletotrichum trifolii in Australia, and lucerne cultivar reactions to all known Australian pathotypes. Aust J Agric Res 54:829–836

    Article  Google Scholar 

  • Mackie JM, Musial JM, Armour DJ, Phan HT, Ellwood SE, Aitken KS, Irwin JA (2007) Identification of QTL for reaction to three races of Colletotrichum trifolii and further analysis of inheritance of resistance in autotetraploid lucerne. Theor Appl Genet 114:1417–1426

    Article  PubMed  CAS  Google Scholar 

  • Meyers BC, Dickerman AW, Michelmore RW, Sivaramakrishnan S, Sobral BW, Young ND (1999) Plant disease resistance genes encode members of an ancient and diverse protein family within the nucleotide-binding superfamily. Plant J 20:317–332

    Article  PubMed  CAS  Google Scholar 

  • Mould MJR, Robb J (1992) The Colletotrichum trifoliiMedicago sativa interface, in culture: a cytological analysis. Can J Bot 70:114–124

    Google Scholar 

  • Mun JH, Kim DJ, Choi HK, Gish J, Debelle F, Mudge J, Denny R, Endre G, Saurat O, Dudez AM, Kiss GB, Roe B, Young ND, Cook DR (2006) Distribution of microsatellites in the genome of Medicago truncatula: a resource of genetic markers that integrate genetic and physical maps. Genetics 172: 2541–2555

    Article  PubMed  CAS  Google Scholar 

  • Nutter FW, Guan J, Gotlieb AR, Rhodes LH, Grau CR, Sulc RM (2002) Quantifying alfalfa yield losses caused by foliar diseases in Iowa, Ohio, Wisconsin, and Vermont. Plant Dis 86:269–277

    Article  Google Scholar 

  • O’Neill NR (1996a) Defense expression in protected tissues of Medicago sativa is enhanced during compatible interactions with Colletotrichum trifolii. Phytopathology 86:1045–1050

    Article  Google Scholar 

  • O’Neill NR (1996b) Pathogenic variability and host resistance in the Colletotrichum trifolii/Medicago sativa pathosystem. Plant Dis 80:450–457

    Article  Google Scholar 

  • O’Neill NR, Bauchan GR (2000) Sources of resistance to anthracnose in the annual Medicago core collection. Plant Dis 84:261–267

    Article  Google Scholar 

  • O’Neill NR, Bauchan GR, Samac DA (2003) Reactions in the annual Medicago spp. Core germ plasm collection to Phoma medicaginis. Plant Dis 87:557–562

    Article  Google Scholar 

  • Ostazeski SA, Elgin JH (1982) Use of hypodermic inoculations of alfalfa for identifying host reactions and races of Colletotrichum trifolii. Crop Sci 22:545–546

    Article  Google Scholar 

  • Ostazeski SA, Elgin JH, McMurtrey JE (1979) Occurrence of anthracnose on formerly anthracnose-resistant “Arc” alfalfa. Plant Dis Rep 63:734–736

    Google Scholar 

  • Salles II, Blount JW, Dixon RA, Schubert K (2002) Phytoalexin induction and ß-1,3-glucanase activities in Colletotrichum trifolii infected leaves of alfalfa (Medicago sativa L.). Physiol Mol Plant Pathol 61:89–101

    Article  CAS  Google Scholar 

  • Solovyev V, Salamov A (1997) The Gene-Finder computer tools for analysis of human and model organisms genome sequences. Proc Int Conf Intell Syst Mol Biol 5:294–302

    PubMed  CAS  Google Scholar 

  • Stuteville DL, Erwin DC (1990) Compendium of alfalfa diseases. American Phytopathology Society, St. Paul

    Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  PubMed  CAS  Google Scholar 

  • Tivoli B, Baranger A, Sivasithamparam K, Barbetti MJ (2006) Annual Medicago: from a model crop challenged by a spectrum of necrotrophic pathogens to a model plant to explore the nature of disease resistance. Ann Bot 98:1117–1128

    Article  PubMed  CAS  Google Scholar 

  • Torregrosa C, Cluzet S, Fournier J, Huguet T, Gamas P, Prospéri J-M, Esquerré-Tugayé M-T, Dumas B, Jacquet C (2004) Cytological, genetic, and molecular analysis to characterize compatible and incompatible interactions between Medicago truncatula and Colletotrichum trifolii. Mol Plant Microbe Interact 17:909–920

    Article  PubMed  CAS  Google Scholar 

  • Vandemark GJ, Grünwald NJ (2004) Reaction of Medicago truncatula to Aphanomyces euteiches race 2. Arch Phytopathol Plant Protect 37:59–67

    Article  Google Scholar 

  • VandenBosch KA, Stacey G (2003) Summaries of legume genomics projects from around the globe. Community resources for crops and models. Plant Physiol 131:840–865

    Article  CAS  Google Scholar 

  • Yaege JR, Stuteville DL (2000) Reactions in the annual Medicago core germ plasm collection to two isolates of Peronospora trifoliorum from alfalfa. Plant Dis 84:521–524

    Article  Google Scholar 

  • Yaege JR, Stuteville DL (2002) Reactions of accessions in the annual Medicago core germ plasm collection to Erysiphe pisi. Plant Dis 86:312–315

    Article  Google Scholar 

  • Young ND, Cannon SB, Sato S, Kim D, Cook DR, Town CD, Roe BA, Tabata S (2005) Sequencing the genespaces of Medicago truncatula and Lotus japonicus. Plant Physiol 137:1174–1181

    Article  PubMed  CAS  Google Scholar 

  • Zhu H, Cannon SB, Young ND, Cook DR (2002) Phylogeny and genomic organization of the TIR and non-TIR NBS-LRR resistance gene family in Medicago truncatula. Mol Plant Microbe Interact 15:529–539

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge Dr. Martin Dickman and Dr. Nichole O’Neill for providing C. trifolii race 1 used for this project. We are also grateful to Dr. J.M. Prosperi for supplying seed of M. truncatula. This work was supported by United States Department of Agriculture (USDA)-NRICGP grants 2005-35301-15697 and 2005-35300-15461 to H. Zhu. This article (07-06-080) is published with the approval of the Director of the Kentucky Agricultural Experiment Station.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongyan Zhu.

Additional information

Communicated by M. Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, S., Gao, M., Deshpande, S. et al. Genetic and physical localization of an anthracnose resistance gene in Medicago truncatula . Theor Appl Genet 116, 45–52 (2007). https://doi.org/10.1007/s00122-007-0645-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-007-0645-7

Keywords

Navigation