Skip to main content
Log in

Reactive oxygen species involved in regulating fruit senescence and fungal pathogenicity

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Senescence is a vital aspect of fruit life cycles, and directly affects fruit quality and resistance to pathogens. Reactive oxygen species (ROS), as the primary mediators of oxidative damage in plants, are involved in senescence. Mitochondria are the main ROS and free radical source. Oxidative damage to mitochondrial proteins caused by ROS is implicated in the process of senescence, and a number of senescence-related disorders in a variety of organisms. However, the specific sites of ROS generation in mitochondria remain largely unknown. Recent discoveries have ascertained that fruit senescence is greatly related to ROS and incidental oxidative damage of mitochondrial protein. Special mitochondrial proteins involved in fruit senescence have been identified as the targets of ROS. We focus in discussion on our recent advances in exploring the mechanisms of how ROS regulate fruit senescence and fungal pathogenicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adams-Phillips L, Barry C, Giovannoni J (2004) Signal transduction systems regulating fruit ripening. Trends Plant Sci 9:331–338

    Article  PubMed  CAS  Google Scholar 

  • Aghaei K, Ehsanpour AA, Komatsu S (2008) Proteome analysis of potato under salt stress. J Proteome Res 7:4858–4868

    Article  PubMed  CAS  Google Scholar 

  • Alba R, Payton P, Fei Z et al (2005) Transcriptome and selected metabolite analyses reveal multiple points of ethylene control during tomato fruit development. Plant Cell 17:2954–2965

    Article  PubMed  CAS  Google Scholar 

  • Alexander L, Grierson D (2002) Ethylene biosynthesis and action in tomato: a model for climacteric fruit ripening. J Exp Bot 53:2039–2055

    Article  PubMed  CAS  Google Scholar 

  • Ali GM, Komatsu S (2006) Proteomic analysis of rice leaf sheath during drought stress. J Proteome Res 5:396–403

    Article  PubMed  CAS  Google Scholar 

  • Ames BN, Shigenaga MK, Hagen TM (1993) Oxidants, antioxidants, and the degenerative diseases of aging. Proc Natl Acad Sci 90:7915–7922

    Article  PubMed  CAS  Google Scholar 

  • Balaban RS, Nemoto S, Finkel T (2005) Mitochondria, oxidants, and aging. Cell 120:483–495

    Article  PubMed  CAS  Google Scholar 

  • Bolwell GP, Butt VS, Davies DR, Zimmerlin A (1995) The origin of the oxidative burst in plants. Free Radic Res 23:517–532

    Article  PubMed  CAS  Google Scholar 

  • Brennan T, Frenkel C (1977) Involvement of hydrogen peroxide in the regulation of senescence in pear. Plant Physiol 59:411–416

    Article  PubMed  CAS  Google Scholar 

  • Brown GC (1992) Control of respiration and ATP synthesis in mammalian mitochondria and cells. Biochem J 284:1–13

    PubMed  CAS  Google Scholar 

  • Bulteau A, Szweda LI, Friguet B (2006) Mitochondrial protein oxidation and degradation in response to oxidative stress and aging. Exp Gerontol 41:653–657

    Article  PubMed  CAS  Google Scholar 

  • Carreras MC, Franco MC, Peralta JG et al (2004) Nitric oxide, complex I, and the modulation of mitochondrial reactive species in biology and disease. Mol Aspects Med 25:125–139

    Article  PubMed  CAS  Google Scholar 

  • Causier B, Kieffer M, Davies B (2002) MADS-box genes reach maturity. Science 296:275–276

    Article  PubMed  CAS  Google Scholar 

  • Chan DC (2006) Mitochondria: dynamic organelles in disease, ageing, and development. Cell 125:1241–1252

    Article  PubMed  CAS  Google Scholar 

  • Chan ZL, Qin GZ, Xu XB, Li BQ, Tian SP (2007) Proteome approach to characterize proteins induced by antagonist yeast and salicylic acid in peach fruit. J Proteome Res 6(5):1677–1688

    Article  PubMed  CAS  Google Scholar 

  • Chan ZL, Wang Q, Xu XB et al (2008) Functions of defense-related proteins and dehydrogenases in resistance response induced by salicylic acid in sweet cherry fruit at different maturity stages. Proteomics 8(22):4791–4807

    Article  PubMed  CAS  Google Scholar 

  • Das N, Levine RL, Orr WC, Sohal RS (2001) Selectivity of protein oxidative damage during aging in Drosophila melanogaster. Biochem J 360:209–216

    Article  PubMed  CAS  Google Scholar 

  • Dietrich RA, Delaney TP, Uknes SJ et al (1994) Arabidopsis mutants simulating disease resistance response. Cell 77:565–577

    Article  PubMed  CAS  Google Scholar 

  • Dixon RA, Lamb CJ (1990) Molecular communication in interactions between plants and microbial pathogens. Annu Rev Plant Physiol Plant Mol Biol 47:339–367

    Article  Google Scholar 

  • England K, O’Driscoll C, Cotter TG (2004) Carbonylation of glycolytic proteins is a key response to drug-induced oxidative stress and apoptosis. Cell Death Differ 11:252–260

    Article  PubMed  CAS  Google Scholar 

  • Frenkel C, Eskin M (1977) Ethylene evolution as related to changes in hydroperoxides in ripening tomato fruit. HortScience 12:552–553

    CAS  Google Scholar 

  • Fukada K, Zhang F, Vien A, Cashman NR, Zhu H (2004) Mitochondrial proteomic analysis of a cell line model of familial amyotrophic lateral sclerosis. Mol Cell Proteomics 3:1211–1223

    Article  PubMed  CAS  Google Scholar 

  • Genova ML, Pich MM, Bernacchia A (2004) The mitochondrial production of reactive oxygen species in relation to aging and pathology. Ann NY Acad Sci 4:86–100

    Article  Google Scholar 

  • Giovannoni JJ (2004) Genetic regulation of fruit development and ripening. Plant Cell 16(Suppl):S170–S180

    PubMed  CAS  Google Scholar 

  • Giulivi C, Kato K, Cooper CE (2006) Nitric oxice regulation of mitochondrial oxygen consumption I: cellular physiology. Am J Physiol Cell Physiol 291:1225–1231

    Article  Google Scholar 

  • Gleason C, Huang SB, Thatcher LF, Foley RC, Anderson CR, Carroll AJ, Millar AH, Singh KB (2011) Mitochondrial complex II has a key role in mitochondrial-derived reactive oxygen species influence on plant stress gene regulation and defense. Proc Natl Acad Sci USA 26:10768–10773

    Article  Google Scholar 

  • Guzy RD, Hoyos B, Robin E, Chen H, Liu L et al (2005) Mitochondrial complex III is required for hypoxia-induced ROS production and cellular oxygen sensing. Cell Metab 1:401–408

    Article  PubMed  CAS  Google Scholar 

  • Guzy RD, Mack MM, Schumacker PT (2007) Mitochondrial complex III is required for hypoxia-induced ROS production and gene transcription in yeast. Antioxid Redox Signal 9:1317–1328

    Article  PubMed  CAS  Google Scholar 

  • Hamann A, Brust D, Osiewacz HD (2008) Apoptosis pathways in fungal growth, development and ageing. Trends Microbiol 16:276–283

    Article  PubMed  CAS  Google Scholar 

  • Harris MH, Thompson CB (2000) The role of the Bcl-2 family in the regulation of outer mitochondrial membrane permeability. Cell Death Differ 7:1182–1191

    Article  PubMed  CAS  Google Scholar 

  • Heazlewood JL, Tonti-Filippini JS, Gout AM et al (2004) Experimental analysis of the Arabidopsis mitochondrial proteome highlights signaling and regulatory components, provides assessment of targeting prediction programs, and indicates plant-specific mitochondrial proteins. Plant Cell 16:241–256

    Article  PubMed  CAS  Google Scholar 

  • Ingavale SS, Chang YC, Lee H (2008) Importance of mitochondria in survival of Cryptococcus neoformans under low oxygen conditions and tolerance to cobalt chloride. PLoS Pathog 4:e1000155

    Article  PubMed  Google Scholar 

  • Jimenez A, Creissen G, Kular B et al (2002) Changes in oxidative processes and components of the antioxidant system during tomato fruit ripening. Planta 214:751–758

    Article  PubMed  CAS  Google Scholar 

  • Karlova R, Rosin FM, Busscher-Lange J et al (2011) Transcriptome and metabolite profiling show that APETALA2a is a major regulator of tomato fruit ripening. Plant Cell 23:923–941

    Article  PubMed  CAS  Google Scholar 

  • Klee HJ, Giovannoni JJ (2011) Genetics and control of tomato fruit ripening and quality attributes. Annu Rev Genet 45:41–59

    Article  PubMed  CAS  Google Scholar 

  • Kraytsberg Y, Kudryavtseva E, McKee AC et al (2006) Mitochondrial DNA deletions are abundant and cause functional impairment in aged human substantia nigra neurons. Nat Genet 38:518–520

    Article  PubMed  CAS  Google Scholar 

  • Kujoth GC, Hiona A, Pugh TD et al (2005) Mitochondrial DNA mutations, oxidative stress, and apoptosis in mammalian ageing. Science 309:481–484

    Article  PubMed  CAS  Google Scholar 

  • Lacan D, Baccou JC (1998) High levels of antioxidant enzymes correlate with delayed senescence in nonnetted muskmelon fruits. Planta 204:377–382

    Article  CAS  Google Scholar 

  • Lai TT, Li BQ, Qin GZ, Tian SP (2011) Oxidative damage involves in the inhibitory effect of nitric oxide on spore germination of Penicillium expansum. Current Microbiol 62:229–234

    Article  PubMed  CAS  Google Scholar 

  • Lee JM, Joung JG, McQuinn R et al (2012) Combined transcriptome, genetic diversity and metabolite profiling in tomato fruit reveals that the ethylene response factor SlERF6 plays an important role in ripening and carotenoid accumulation. Plant J 70:191–204

    Article  PubMed  CAS  Google Scholar 

  • Lemasters JJ, Holmuhamedov E (2006) Voltage-dependent anion channel (VDAC) as mitochondrial governator—thinking outside the box. Biochim Biophys Acta 1762:181–190

    Article  PubMed  CAS  Google Scholar 

  • Lester GE (2003) Oxidative stress affecting fruit senescence. In: Hodges DM (ed) Postharvest oxidative stress in horticultural crops. Food Products Press, New York, pp 113–129

    Google Scholar 

  • Madesh M, Hajnóczky G (2001) VDAC-dependent permeabilization of the outer mitochondrial membrane by superoxide induces rapid and massive cytochrome c release. J Cell Biol 155:1003–1015

    Article  PubMed  CAS  Google Scholar 

  • Mellersh DG, Foulds IV, Higgins VJ, Heath MC (2002) H2O2 plays different roles in determining penetration failure in three diverse plant-fungal interactions. Plant J 29:257–268

    Article  PubMed  CAS  Google Scholar 

  • Melov S, Ravenscroft J, Malik S et al (2000) Extension of life-span with superoxide dismutase/catalase mimetics. Science 289:1567–1569

    Article  PubMed  CAS  Google Scholar 

  • Møller IM (2001) Plant mitochondria and oxidative stress: electron transport, NADPH turnover and metabolism of reactive oxygen species. Annu Rev Plant Physiol Plant Mol Biol 52:561–591

    Article  PubMed  Google Scholar 

  • Møller IM, Kristensen BK (2006) Protein oxidation in plant mitochondria detected as oxidized tryptophan. Free Radic Biol Med 40:430–435

    Article  PubMed  Google Scholar 

  • Moradas-Ferreira P, Costa V, Piper P, Mager W (1996) The molecular defenses against reactive oxygen species in yeast. Mol Microbiol 19:651–658

    Article  PubMed  CAS  Google Scholar 

  • Mur LAJ, Carver TLW, Prats E (2006) NO way to live; the various role of nitric oxide in plant-pathogen interactions. J Exp Bot 57:489–502

    Article  PubMed  CAS  Google Scholar 

  • Nyström T (2005) Role of oxidative carbonylation in protein quality control and senescence. EMBO J 24:1311–1317

    Article  PubMed  Google Scholar 

  • Picton S, Barton SL, Bouzayen M, Hamilton AJ, Grierson D (1993) Altered fruit ripening and leaf senescence in tomatoes expressing an antisense ethylene-forming enzyme transgene. Plant J 3:469–481

    Article  CAS  Google Scholar 

  • Preston TJ, Muller WJ, Singh G (2001) Scavenging of extracellular H2O2 by catalase inhibits the proliferation of HER-2/Neu transformed rat-1 fibroblasts through the induction of a stress response. J Biol Chem 276:9558–9564

    Article  PubMed  CAS  Google Scholar 

  • Qin GZ, Tian SP, Chan ZL, Li BQ (2007) Crucial role of antioxidant proteins and hydrolytic enzymes in pathogenicity of Penicillium expansum: analysis based on proteomic approach. Mole Cell Proteomics 6:425–438

    Article  CAS  Google Scholar 

  • Qin G, Meng X, Wang Q, Tian S (2009a) Oxidative damage of mitochondrial proteins contributes to fruit senescence: a redox proteomics analysis. J Proteome Res 8:2449–2462

    Article  PubMed  CAS  Google Scholar 

  • Qin GZ, Wang Q, Meng XH et al (2009b) Proteomic analysis of changes in mitochondrial protein expression during fruit senescence. Proteomics 9:4241–4253

    Article  PubMed  CAS  Google Scholar 

  • Qin GZ, Zong YY, Chen QL, Hua DL, Tian SP (2010) Inhibitory effect of boron against Botrytis cinerea on table grapes and its possible mechanisms of action. Int J Food Microbiol 138:145–150

    Article  PubMed  CAS  Google Scholar 

  • Qin GZ, Liu J, Li BQ, Cao BH, Tian SP (2011) Hydrogen peroxide acts on specific mitochondrial proteins to induce cell death of fungal pathogen revealed by proteomic analysis. PLoS One 6:e21945

    Article  PubMed  CAS  Google Scholar 

  • Qin G, Wang Y, Cao B, Wang W, Tian S (2012) Unraveling the regulatory network of the MADS box transcription factor RIN in fruit ripening. Plant J 70:243–255

    Article  PubMed  CAS  Google Scholar 

  • Rogiers SY, Kumar GNM, Knowles NR (1998) Maturation and ripening of fruit of Amelanchier alnifolia Nutt. are accompanied by increasing oxidative stress. Ann Bot 81:203–211

    Article  CAS  Google Scholar 

  • Scheckhuber CQ, Erjavec N, Tinazli A et al (2007) Reducing mitochondrial fission results in increased life span and fitness of two fungal ageing models. Nat Cell Biol 9:99–105

    Article  PubMed  CAS  Google Scholar 

  • Shi XQ, Li BQ, Qin GZ, Tian SP (2012) Mechanism of antifungal action of borate against Colletotrichum gloeosporioides related to mitochondrial degradation in spores. Postharvest Biol Technol 67:138–143

    Article  CAS  Google Scholar 

  • Shimizu S, Matsuoka Y, Shinohara Y, Yoneda Y, Tsujimoto Y (2001) Essential role of voltage-dependent anion channel in various forms of apoptosis in mammalian cells. J Cell Biol 152:237–250

    Article  PubMed  CAS  Google Scholar 

  • Simon HU, Haj-Yehia A, Levi-Schaffer F (2000) Role of reactive oxygen species (ROS) in the apoptosis induction. Apoptosis 5:415–418

    Article  PubMed  CAS  Google Scholar 

  • Spiteller G (2001) Lipid oxidation in aging and age-dependent disease. Exp Gerontol 36:1425–1457

    Article  PubMed  CAS  Google Scholar 

  • Stadtman ER (1992) Protein oxidation and aging. Science 257:1220–1224

    Article  PubMed  CAS  Google Scholar 

  • Stadtman ER (2000) Protein oxidation in aging and age-related diseases. Ann NY Acad Sci 928:22–38

    Article  CAS  Google Scholar 

  • Stefanatos R, Sanz A (2011) Mitochondrial complex I: a central regulator of the aging process. Cell Cycle 10:1528–1532

    Article  PubMed  CAS  Google Scholar 

  • Sweetlove LJ, Heazlewood JL, Herald V et al (2002) The impact of oxidative stress on Arabidopsis mitochondria. Plant J 32:891–904

    Article  PubMed  CAS  Google Scholar 

  • Thannickal VJ, Fanburg BL (2000) Reactive oxygen species in cell signaling. Am J Physiol Lung Cell Mol Physiol 279:1005–1028

    Google Scholar 

  • Tian SP, Jiang AL, Xu Y, Wang YS (2004) Responses of physiology and quality of sweet cherry fruit to different atmospheres in storage. Food Chem 87:43–49

    Article  CAS  Google Scholar 

  • Tian SP, Wan YK, Qin GZ, Xu Y (2006) Induction of defense responses against Alternaria rot by different elicitors in harvested pear fruit. Appl Microbiol Biotechnol 70:729–734

    Article  PubMed  CAS  Google Scholar 

  • Tian SP, Qin GZ, Li BQ, Wang Q, Meng XH (2007) Effects of salicylic acid on disease resistance and postharvest decay control of fruit. Stewart Postharvest Rev 6:1–7

    Article  Google Scholar 

  • Toroser D, Orr WC, Sohal RS (2007) Carbonylation of mitochondrial proteins in Drosophila melanogaster during aging. Biochem Biophys Res Commun 363:418–424

    Article  PubMed  CAS  Google Scholar 

  • Turrens JF (2003) Mitochondrial formation of reactive oxygen species. J Physiol 552:335–344

    Article  PubMed  CAS  Google Scholar 

  • Turrens JF, Freeman BA, Crapo JD (1982) Hyperoxia increases H2O2 release by lung mitochondria and microsomes. Arch Biochem Biophys 217:411–421

    Article  PubMed  CAS  Google Scholar 

  • Veal EA, Toone WM, Jones N, Morgan BA (2002) Distinct roles for glutathione S-transferases in the oxidative stress response in Schizosaccharomyces pombe. J Biol Chem 277:35523–35531

    Article  PubMed  CAS  Google Scholar 

  • Vrebalov J, Pan IL, Arroyo AJ et al (2009) Fleshy fruit expansion and ripening are regulated by the Tomato SHATTERPROOF gene TAGL1. Plant Cell 21:3041–3062

    Article  PubMed  CAS  Google Scholar 

  • Wang YS, Tian SP, Xu Y (2005) Effects of high oxygen concentration on pro- and anti-oxidant enzymes in peach fruits during postharvest stages. Food Chem 91:99–104

    Article  CAS  Google Scholar 

  • Wang Q, Qin GZ, Lai TF, Tian SP (2009) Response of jujube fruit to exogenous oxalic acid treatment based on proteomic analysis. Plant Cell Physiol 50:230–242

    Article  PubMed  CAS  Google Scholar 

  • Warm E, Laties GG (1982) Quantification of hydrogen peroxide in plant extracts by the chemiluminescence reaction with luminal. Phytochemistry 21:827–831

    Article  CAS  Google Scholar 

  • Yagoda N, von Rechenberg M, Zaganjor E et al (2007) RAS-RAF-MEK-dependent oxidative cell death involving voltage-dependent anion channels. Nature 447:864–868

    Article  PubMed  Google Scholar 

  • Yan LJ, Sohal RS (1998) Mitochondrial adenine nucleotide translocase is modified oxidatively during aging. Proc Natl Acad Sci USA 95:12896–12901

    Article  PubMed  CAS  Google Scholar 

  • Yan LJ, Levine RL, Sohal RS (1997) Oxidative damage during aging targets mitochondrial aconitase. Proc Natl Acad Sci USA 94:11168–11172

    Article  PubMed  CAS  Google Scholar 

  • Yang T, Poovaiah BW (2002) Hydrogen peroxide homeostasis: activation of plant catalase by calcium/calmodulin. Proc Natl Acad Sci USA 99:4097–4102

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank the National Natural Science Foundation of China (grant no. 31030051), the National Basic Research Program of China (973 Program, grant no. 2011CB100604) and the CAS/SAFEA International Partnership Program for Creative Research Teams (grant no. 20090491019) for the support of the research projects related to this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiping Tian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tian, S., Qin, G. & Li, B. Reactive oxygen species involved in regulating fruit senescence and fungal pathogenicity. Plant Mol Biol 82, 593–602 (2013). https://doi.org/10.1007/s11103-013-0035-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-013-0035-2

Keywords

Navigation