Skip to main content
Log in

Evaluation of the hormonal state of columnar apple trees (Malus x domestica) based on high throughput gene expression studies

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

The columnar phenotype of apple trees (Malus x domestica) is characterized by a compact growth habit with fruit spurs instead of lateral branches. These properties provide significant economic advantages by enabling high density plantings. The columnar growth results from the presence of a dominant allele of the gene Columnar (Co) located on chromosome 10 which can appear in a heterozygous (Co/co) or homozygous (Co/Co) state. Although two deep sequencing approaches could shed some light on the transcriptome of columnar shoot apical meristems (SAMs), the molecular mechanisms of columnar growth are not yet elaborated. Since the influence of phytohormones is believed to have a pivotal role in the establishment of the phenotype, we performed RNA-Seq experiments to study genes associated with hormone homeostasis and clearly affected by the presence of Co. Our results provide a molecular explanation for earlier findings on the hormonal state of columnar apple trees. Additionally, they allow hypotheses on how the columnar phenotype might develop. Furthermore, we show a statistically approved enrichment of differentially regulated genes on chromosome 10 in the course of validating RNA-Seq results using additional gene expression studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

Co:

Columnar

NGS:

Next generation sequencing

SAM:

Shoot apical meristem

IAA:

Indole-3-acetic acid

CK:

Cytokinin

ABA:

Abscisic acid

GA:

Gibberellic acid

JA:

Jasmonic acid

A14:

A14-190-93 (non-columnar type apple)

P28:

Procats 28 (columnar type apple)

BR:

Brassinosteroid

References

  • Anders S, Huber W (2010) Differential expression analysis for sequence count data. Genome Biol 11:R106

    Article  PubMed  CAS  Google Scholar 

  • Atzorn R (1983) The immunoassay of gibberellins. Planta 159:1–6

    Article  CAS  Google Scholar 

  • Blažek J (1992) Segregation and general evaluation of spur type or compact growth habits in apples. Acta Hortic 317:71–79

    Google Scholar 

  • Cline MG (1994) The role of hormones in apical dominance. New approaches to an old problem in plant development. Physiol Plant 90:230–237

    Article  CAS  Google Scholar 

  • Conner PJ, Brown SK, Weeden NF (1998) Molecular-marker analysis of quantitative traits for growth and development in juvenile apple trees. Theor Appl Genet 96:1027–1035

    Article  CAS  Google Scholar 

  • De Wit I, Pauwels E, Keulemans J (2000) Different growth habits in apple and correlation between growth characteristics in progenies with a common Co-gene parent. Acta Hortic 538:325–330

    Google Scholar 

  • De Wit I, Cook NC, Keulemans J (2004) Characterization of tree architecture in two-year-old apple seedling populations of different progenies with a common columnar gene parent. Acta Hortic 663:363–368

    Google Scholar 

  • Depuydt S, Hardtke CS (2011) Hormone signalling crosstalk in plant growth regulation. Curr Biol 21:R365–R373

    Article  PubMed  CAS  Google Scholar 

  • Domagalska MA, Leyser O (2011) Signal integration in the control of shoot branching. Nat Rev Mol Cell Biol 12:211–221

    Article  PubMed  CAS  Google Scholar 

  • Eaton GW, Lapins KO (1970) Identification of standard and compact apple trees by discriminate function analysis. J Appl Ecol 7:267–272

    Article  Google Scholar 

  • Effendi Y, Rietz S, Fischer U, Scherer GF (2011) The heterozygous abp1/ABP1 insertional mutant has defects in functions requiring polar auxin transport and in regulation of early auxin-regulated genes. Plant J 65:282–294

    Article  PubMed  CAS  Google Scholar 

  • Fisher DV (1969) Spur-type strains of McIntosh for high density plantings. BR Columbia Fruit Grow Assoc Q Report 14:3–10

    Google Scholar 

  • Garber M, Grabherr MG, Guttman M, Trapnell C (2011) Computational methods for transcriptome annotation and quantification using RNA-seq. Nat Methods 8:469–477

    Article  PubMed  CAS  Google Scholar 

  • Gazzarrini S, McCourt P (2003) Cross-talk in plant hormone signalling: what Arabidopsis mutants are telling us. Ann Bot 91:605–612

    Article  PubMed  CAS  Google Scholar 

  • Gou J, Strauss SH, Tsai CJ, Fang K, Chen Y, Jiang X, Busov VB (2010) Gibberellins regulate lateral root formation in Populus through interactions with auxin and other hormones. Plant Cell 22:623–639

    Article  PubMed  CAS  Google Scholar 

  • Hemmat M, Weeden NF, Conner PJ, Brown SK (1997) A DNA marker for columnar growth habit in apple contains a simple sequence repeat. J Amer Soc Hort Sci 122:347–349

    CAS  Google Scholar 

  • Hyodo H, Yamakawa S, Takeda Y, Tsuduki M, Yokota A, Nishitani K, Kohchi T (2003) Active gene expression of a xyloglucan endotransglucosylase/hydrolase gene, XTH9, in inflorescence apices is related to cell elongation in Arabidopsis thaliana. Plant Mol Biol 52:473–482

    Article  PubMed  CAS  Google Scholar 

  • Jacob HB (2010) Breeding experiments of apple varieties with columnar growth and low chilling requirements. Acta Hortic 872:159–164

    Google Scholar 

  • Kanehisa M, Goto S, Sato Y, Furumichi M, Tanabe M (2012) KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res 40:D109–D114

    Article  PubMed  CAS  Google Scholar 

  • Kenis K, Keulemans J (2007) Study of tree architecture of apple (Malus × domestica Borkh.) by QTL analysis of growth traits. Mol Breed 19:193–208

    Article  CAS  Google Scholar 

  • Kim MY, Song KJ, Hwang J-H, Shin Y-U, Lee HJ (2003) Development of RAPD and SCAR markers linked to the Co gene conferring columnar growth habit in apple (Malus pumila Mill.). J Hort Sci Biotechnol 78:512–517

    CAS  Google Scholar 

  • Kleine-Vehn J, Dhonukshe P, Swarup R, Bennett M, Friml J (2006) Subcellular trafficking of the Arabidopsis auxin influx carrier AUX1 uses a novel pathway distinct from PIN1. Plant Cell 18:3171–3181

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi Y, Murata M, Minami H, Yamamoto S, Kagaya Y, Hobo T, Yamamoto A, Hattori T (2005) Abscisic acid-activated SNRK2 protein kinases function in the gene-regulation pathway of ABA signal transduction by phosphorylating ABA response element-binding factors. Plant J 44:939–949

    Article  PubMed  CAS  Google Scholar 

  • Krost C, Petersen R, Schmidt ER (2012) The transcriptomes of columnar and standard type apple trees (Malus x domestica): A comparative study. Gene 498:223–230

    Google Scholar 

  • Kvam VM, Liu P, Si Y (2012) A comparison of statistical methods for detecting differentially expressed genes from RNA-seq data. Am J Bot 99:248–256

    Article  PubMed  Google Scholar 

  • Lackman P, Gonzalez-Guzman M, Tilleman S, Carqueijeiro I, Perez AC, Moses T, Seo M, Kanno Y, Hakkinen ST, Van Montagu MC, Thevelein JM, Maaheimo H, Oksman-Caldentey KM, Rodriguez PL, Rischer H, Goossens A (2011) Jasmonate signaling involves the abscisic acid receptor PYL4 to regulate metabolic reprogramming in Arabidopsis and tobacco. Proc Natl Acad Sci USA 108:5891–5896

    Article  PubMed  CAS  Google Scholar 

  • Lane WD, Looney NE (1982) A selective tissue culture medium for growth of compact (Dwarf) mutants of apple. Theor Appl Genet 61:219–223

    Google Scholar 

  • Lapins KO (1969) Segregation of compact growth types in certain apple seedling progenies. Canad J Plant Sci 49:765–768

    Article  Google Scholar 

  • Lapins KO, Watkins R (1973) Genetics of compact growth habit. Report of east malling research station for 1972. 136

  • Lee JM, Looney NE (1977) Absisic acid levels and genetic compaction in apple seedlings. Canad J Plant Sci 57:81–85

    Article  CAS  Google Scholar 

  • Lester DR, Ross JJ, Smith JJ, Elliott RC, Reid JB (1999) Gibberellin 2-oxidation and the SLN gene of Pisum sativum. Plant J 19:65–73

    Article  PubMed  CAS  Google Scholar 

  • Looney NE, Lane WD (1984) Spur-type growth mutants of McIntosh apple: a review of their genetics, physiology and field performance. Acta Hortic 146:31–46

    Google Scholar 

  • Martin DN, Proebsting WM, Hedden P (1999) The SLENDER gene of pea encodes a gibberellin 2-oxidase. Plant Physiol 121:775–781

    Article  PubMed  CAS  Google Scholar 

  • McVean G (2007) The structure of linkage disequilibrium around a selective sweep. Genetics 175:1395–1406

    Article  PubMed  Google Scholar 

  • Moriya S, Iwanami H, Kotoda N, Takahashi S, Yamamoto T, Kazuyuki A (2009) Development of a marker-assisted selection system for columnar growth habit in apple breeding. J Japan Soc Hort Sci 78:279–287

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Ohmiya A, Tanaka Y, Kadowaki K, Hayashi T (1998) Cloning of genes encoding auxin-binding proteins (ABP19/20) from peach: significant peptide sequence similarity with germin-like proteins. Plant Cell Physiol 39:492–499

    Article  PubMed  CAS  Google Scholar 

  • Pokalyuk C (2012) The effect of recurrent mutation on the linkage disequilibrium under a selective sweep. J Math Biol 64:291–317

    Article  PubMed  Google Scholar 

  • Reid JB, Davidson SE, Ross JJ (2011) Auxin acts independently of DELLA proteins in regulating gibberellin levels. Plant Signal Behav 6:406–408

    Article  PubMed  CAS  Google Scholar 

  • Romo S, Jimenez T, Labrador E, Dopico B (2005) The gene for a xyloglucan endotransglucosylase/hydrolase from Cicer arietinum is strongly expressed in elongating tissues. Plant Physiol Biochem 43:169–176

    Article  PubMed  CAS  Google Scholar 

  • Rose JK, Braam J, Fry SC, Nishitani K (2002) The XTH family of enzymes involved in xyloglucan endotransglucosylation and endohydrolysis: current perspectives and a new unifying nomenclature. Plant Cell Physiol 43:1421–1435

    Article  PubMed  CAS  Google Scholar 

  • Santiago J, Rodrigues A, Saez A, Rubio S, Antoni R, Dupeux F, Park SY, Marquez JA, Cutler SR, Rodriguez PL (2009) Modulation of drought resistance by the abscisic acid receptor PYL5 through inhibition of clade A PP2Cs. Plant J 60:575–588

    Article  PubMed  CAS  Google Scholar 

  • Sarwar M, Skirvin RM (1997) Effect of thidiazuron and 6-benzylaminopurine on adventitious shoot regeneration from leaves of three strains of ‘McIntosh’ apple (Malus x domestica Borkh.) in vitro. Sci Hortic 86:95–100

    Article  Google Scholar 

  • Sarwar M, Skirvin RM, Kushad M, Norton MA (1998) Selecting dwarf apple (Malus x domestica Borkh.) trees in vitro: multiple cytokinin tolerance expressed among three strains of ‘McIntosh’ that differ in their growth habit under field conditions. Plant Cell Tissue Organ Cult 54:71–76

    Article  CAS  Google Scholar 

  • Shimizu-Sato S, Tanaka M, Mori H (2009) Auxin-cytokinin interactions in the control of shoot branching. Plant Mol Biol 69:429–435

    Article  PubMed  CAS  Google Scholar 

  • Staswick PE, Serban B, Rowe M, Tiryaki I, Maldonado MT, Maldonado MC, Suza W (2005) Characterization of an Arabidopsis enzyme family that conjugates amino acids to indole-3-acetic acid. Plant Cell 17:616–627

    Article  PubMed  CAS  Google Scholar 

  • Suza WP, Staswick PE (2008) The role of JAR1 in Jasmonoyl-L: isoleucine production during Arabidopsis wound response. Planta 227:1221–1232

    Article  PubMed  CAS  Google Scholar 

  • Takahashi T, Gasch A, Nishizawa N, Chua NH (1995) The DIMINUTO gene of Arabidopsis is involved in regulating cell elongation. Genes Dev 9:97–107

    Article  PubMed  CAS  Google Scholar 

  • Takei K, Yamaya T, Sakakibara H (2004) Arabidopsis CYP735A1 and CYP735A2 encode cytokinin hydroxylases that catalyze the biosynthesis of trans-Zeatin. J Biol Chem 279:41866–41872

    Article  PubMed  CAS  Google Scholar 

  • Thimm O, Blasing O, Gibon Y, Nagel A, Meyer S, Kruger P, Selbig J, Muller LA, Rhee SY, Stitt M (2004) MAPMAN: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. Plant J 37:914–939

    Article  PubMed  CAS  Google Scholar 

  • Thomas SG, Phillips AL, Hedden P (1999) Molecular cloning and functional expression of gibberellin 2- oxidases, multifunctional enzymes involved in gibberellin deactivation. Proc Natl Acad Sci U S A 96:4698–4703

    Article  PubMed  CAS  Google Scholar 

  • Tian YK, Wang CH, Zhang JS, James C, Dai HY (2005) Mapping Co, a gene controlling the columnar phenotype of apple, with molecular markers. Euphytica 145:181–188

    Article  CAS  Google Scholar 

  • Tian F, Stevens NM, Buckler EST (2009) Tracking footprints of maize domestication and evidence for a massive selective sweep on chromosome 10. Proc Natl Acad Sci U S A 106(Suppl 1):9979–9986

    Article  PubMed  CAS  Google Scholar 

  • Tobutt KR (1985) Breeding columnar apples at east malling. Acta Hortic 159:63–68

    Google Scholar 

  • Velasco R, Zharkikh A, Affourtit J, Dhingra A, Cestaro A, Kalyanaraman A, Fontana P, Bhatnagar SK, Troggio M, Pruss D, Salvi S, Pindo M, Baldi P, Castelletti S, Cavaiuolo M, Coppola G, Costa F, Cova V, Dal Ri A, Goremykin V, Komjanc M, Longhi S, Magnago P, Malacarne G, Malnoy M, Micheletti D, Moretto M, Perazzolli M, Si-Ammour A, Vezzulli S, Zini E, Eldredge G, Fitzgerald LM, Gutin N, Lanchbury J, Macalma T, Mitchell JT, Reid J, Wardell B, Kodira C, Chen Z, Desany B, Niazi F, Palmer M, Koepke T, Jiwan D, Schaeffer S, Krishnan V, Wu C, Chu VT, King ST, Vick J, Tao Q, Mraz A, Stormo A, Stormo K, Bogden R, Ederle D, Stella A, Vecchietti A, Kater MM, Masiero S, Lasserre P, Lespinasse Y, Allan AC, Bus V, Chagne D, Crowhurst RN, Gleave AP, Lavezzo E, Fawcett JA, Proost S, Rouze P, Sterck L, Toppo S, Lazzari B, Hellens RP, Durel CE, Gutin A, Bumgarner RE, Gardiner SE, Skolnick M, Egholm M, Van de Peer Y, Salamini F, Viola R (2010) The genome of the domesticated apple (Malus x domestica Borkh.). Nat Genet 42: 833–9

    Google Scholar 

  • Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10:57–63

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Nagegowda DA, Rawat R, Bouvier-Nave P, Guo D, Bach TJ, Chye ML (2011) Overexpression of Brassica juncea wild-type and mutant HMG-CoA synthase 1 in Arabidopsis up-regulates genes in sterol biosynthesis and enhances sterol production and stress tolerance. Plant Biotechnol J 10:31–42

    Article  PubMed  CAS  Google Scholar 

  • Watanabe H, Suzuki A, Komori S, Sato H (2003) Effect of plant growth regulators on shoot growth of a columnar type apple tree. Hort Res 2:97–100

    Article  CAS  Google Scholar 

  • Watanabe M, Suzuki A, Komori S, Bessho H (2004) Comparison of endogenous IAA and cytokinins in shoots of columnar and normal type apple trees. J Japan Soc Hort Sci 73:19–24

    Article  CAS  Google Scholar 

  • Watanabe M, Suzuki A, Komori S, Bessho H (2006) Effects of heading-back pruning on shoot growth and IAA and cytokinin concentrations at bud burst of columnar-type apple trees. J Japan Soc Hort Sci 75:224–230

    Article  CAS  Google Scholar 

  • Watanabe M, Bessho H, Suzuki A, Komori S (2008) Seasonal changes of IAA and cytokinin in shoots of columnar type apple trees. Acta Hortic 774:75–80

    CAS  Google Scholar 

  • Wilson BF (2000) Apical control of branch growth and angle in woody plants. Am J Bot 87:601–607

    Article  PubMed  CAS  Google Scholar 

  • Zhang S, Wei Y, Lu Y, Wang X (2009) Mechanisms of brassinosteroids interacting with multiple hormones. Plant Signal Behav 4:1117–1120

    Google Scholar 

  • Zhang Y, Zhu J, Dai HY (2012) Characterization of transcriptional differences between columnar and standard apple trees using RNA-Seq. Plant Mol Biol Reporter 30:957–965

    Google Scholar 

Download references

Acknowledgments

We thank Benjamin Rieger and Dr. Steffen Rapp for their work in the development of Perl scripts and their bioinformatics support. We are grateful to Dr. Walker Jackson for his many helpful comments on the manuscript. The work was supported by grants of the Federal Ministry of Agriculture and Nutrition (Nr. 511-06.01-28-1-43.042-07 and Nr. 313-06.01-28-1-43.042-07).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erwin R. Schmidt.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11103_2012_9992_MOESM1_ESM.xlsx

Results from DESeq analysis The table contains 1173 differentially regulated genes with p < 0.005 and fold change > 3.0 obtained from DESeq analysis. For every gene, Malus x domestica UniGene database ID, Malus x domestica genome project ID and Populus trichocarpa genome project ID (used for MAPMAN visualization) is provided. Log2 fold change values are highlighted in green and red representing up or down regulation, respectively. All entries are sorted by base mean values (XLSX 174 kb)

11103_2012_9992_MOESM2_ESM.tif

MAPMAN analysis of differentially regulated genes The figure visualizes all genes found to be differentially expressed by DESeq for metabolic processes (A) and various functional categories (B). Overrepresented categories that confirm earlier findings (Krost et al. 2012) are framed in red. Red and green boxes represent repressed and induced genes, respectively. Values in the key imply log2 of normalized Illumina read counts(TIFF 1665 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krost, C., Petersen, R., Lokan, S. et al. Evaluation of the hormonal state of columnar apple trees (Malus x domestica) based on high throughput gene expression studies. Plant Mol Biol 81, 211–220 (2013). https://doi.org/10.1007/s11103-012-9992-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-012-9992-0

Keywords

Navigation