Skip to main content
Log in

Suppression of CCR impacts metabolite profile and cell wall composition in Pinus radiata tracheary elements

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Suppression of the lignin-related gene cinnamoyl-CoA reductase (CCR) in the Pinus radiata tracheary element (TE) system impacted both the metabolite profile and the cell wall matrix in CCR-RNAi lines. UPLC–MS/MS-based metabolite profiling identified elevated levels of p-coumaroyl hexose, caffeic acid hexoside and ferulic acid hexoside in CCR-RNAi lines, indicating a redirection of metabolite flow within phenylpropanoid metabolism. Dilignols derived from coniferyl alcohol such as G(8-5)G, G(8-O-4)G and isodihydrodehydrodiconiferyl alcohol (IDDDC) were substantially depleted, providing evidence for CCR’s involvement in coniferyl alcohol biosynthesis. Severe CCR suppression almost halved lignin content in TEs based on a depletion of both H-type and G-type lignin, providing evidence for CCR’s involvement in the biosynthesis of both lignin types. 2D-NMR studies revealed minor changes in the H:G-ratio and consequently a largely unchanged interunit linkage distribution in the lignin polymer. However, unusual cell wall components including ferulate and unsaturated fatty acids were identified in TEs by thioacidolysis, pyrolysis-GC/MS and/or 2D-NMR in CCR-RNAi lines, providing new insights into the consequences of CCR suppression in pine. Interestingly, CCR suppression substantially promoted pyrolytic breakdown of cell wall polysaccharides, a phenotype most likely caused by the incorporation of acidic compounds into the cell wall matrix in CCR-RNAi lines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Anterola AM, Jeon J-H, Davin LB, Lewis NG (2002) Transcriptional control of monolignol biosynthesis in Pinus taeda: factors affecting monolignol ratios and carbon allocation in phenylpropanoid metabolism. J Biol Chem 21:18272–18280

    Article  Google Scholar 

  • Bernards MA (2002) Demystifying suberin. Can J Bot 80:227–240

    Article  CAS  Google Scholar 

  • Boudet AM, Kajita S, Grima-Pettenati J, Goffner D (2003) Lignins and lignocellulosics: a better control of synthesis for new and improved uses. Trends Plant Sci 8:576–581

    Article  PubMed  CAS  Google Scholar 

  • Cato S, McMillan L, Donaldson L, Richardson T, Echt C, Gardner R (2006) Wood formation from the base to the crown in Pinus radiata: gradients of tracheid wall thickness, wood density, radial growth rate and gene expression. Plant Mol Biol 60:565–581

    Article  PubMed  CAS  Google Scholar 

  • Chabannes M, Barakate A, Lapierre C, Marita JM, Ralph J, Pean M, Danoun S, Halpin C, Grima-Pettenati J, Boudet AM (2001) Strong decrease in lignin content without significant alteration of plant development is induced by simultaneous down-regulation of cinnamoyl CoA reductase (CCR) and cinnamyl alcohol dehydrogenase (CAD) in tobacco plants. Plant J 28:257–270

    Article  PubMed  CAS  Google Scholar 

  • Christensen AH, Sharrock RA, Quail PH (1992) Z. mays polyubiquitin genes: structure, thermal perturbation of expression and transcript splicing, and promoter activity following transfer to protoplasts by electroporation. Plant Mol Biol 18:675–689

    Article  PubMed  CAS  Google Scholar 

  • Dauwe R, Morreel K, Goeminne G, Gielen B, Rohde A, Van Beeumen J, Ralph J, Boudet A-M, Kopka J, Rochange SF, Halpin C, Messens E, Boerjan W (2007) Molecular phenotyping of lignin-modified tobacco reveals associated changes in cell-wall metabolism, primary metabolism, stress metabolism and photorespiration. Plant J 52:263–285

    Article  PubMed  CAS  Google Scholar 

  • Dobele G, Dizhbite T, Rossinskaja G, Telysheva G, Meier D, Radtke S, Faix O (2003) Pre-treatment of biomass with phosphoric acid prior to fast pyrolysis: a promising method for obtaining 1,6-anhydrosaccharides in high yields. J Anal Appl Pyrolysis 68–69:197–211

    Article  Google Scholar 

  • Dobele G, Rossinskaja G, Dizhbite T, Telysheva G, Meier D, Faix O (2005) Application of catalysts for obtaining 1,6-anhydrosaccharides from cellulose and wood by fast pyrolysis. J Anal Appl Pyrolysis 74:401–405

    Article  CAS  Google Scholar 

  • Faix O, Meier D, Fortmann I (1990) Thermal degradation products of wood. Holz als Roh- und Werkstoff 48:281–285

    Article  CAS  Google Scholar 

  • Faix O, Fortmann I, Bremer J, Meier D (1991a) Thermal degradation products of wood. Holz als Roh- und Werkstoff 49:213–219

    Article  CAS  Google Scholar 

  • Faix O, Fortmann I, Bremer J, Meier D (1991b) Thermal degradation products of wood. Holz als Roh- und Werkstoff 49:299–304

    Article  CAS  Google Scholar 

  • Goujon T, Ferret V, Mila I, Pollet B, Ruel K, Burlat V, Joseleau J-P, Barrière Y, Lapierre C, Jouanin L (2003) Down-regulation of the AtCCR1 gene in Arabidopsis thaliana: effects on phenotype, lignins and cell wall degradability. Planta 217:218–228

    PubMed  CAS  Google Scholar 

  • Harborne JB (1980) Plant phenolics. In: Bell EA, Charlwood BV (eds) Secondary plant products. Springer, New York, pp 329–395

    Chapter  Google Scholar 

  • Hatfield RD, Grabber J, Ralph J, Brei K (1999) Using the acetyl bromide assay to determine lignin concentrations in herbaceous plants: same cautionary notes. J Agric Food Chem 47:628–632

    Article  PubMed  CAS  Google Scholar 

  • Jones L, Ennos AR, Turner SR (2001) Cloning and characterization of irregular xylem4 (irx4): a severely lignin-deficient mutant of Arabidopsis. Plant J 26:205–216

    Article  PubMed  CAS  Google Scholar 

  • Kasahara H, Jiao Y, Bedgar DL, Kim S-J, Patten AM, Xia Z-Q, Davin LB, Lewis NG (2006) Pinus taeda phenylpropenal double-bond reductase: purification, cDNA cloning, heterologous expression in Escherichia coli, and subcellular localization in P. taeda. Phytochem 67:1765–1780

    Article  CAS  Google Scholar 

  • Kim H, Ralph J (2010) Solution-state 2D NMR of ball-milled plant cell wall gels in DMSO-d 6/pyridine-d 5. Org Biomol Chem 8:576–591

    Article  PubMed  CAS  Google Scholar 

  • Lacombe E, Hawkins S, Van Doorsselaere J, Piquemal J, Goffner D, Poeydomenge O, Boudet A-M, Grima-Pettenati J (1997) Cinnamoyl CoA reductase, the first committed enzyme of the lignin branch biosynthetic pathway: cloning, expression and phylogenetic relationships. Plant J 11:429–441

    Article  PubMed  CAS  Google Scholar 

  • Leplé J-C, Dauwe R, Morreel K, Storme V, Lapierrre V, Naumann A, Kang K-Y, Kim H, Ruel K, Lefèbvre A, Joseleau J-P, Grima-Pettenati J, De Rycke R, Andersson-Gunnerås S, Erban A, Fehrle I, Petit-Conil M, Kopka J, Polle A, Messens E, Sundberg B, Mansfield SD, Ralph J, Pilate G, Boerjan W (2007) Down-regulation of cinnamyl-coenzyme A reductase in poplar: multiple-level phenotyping reveals effects on cell wall polymer metabolism and structure. Plant Cell 19:3669–3691

    Article  PubMed  Google Scholar 

  • Lu F, Ralph J (2003) Non-degradative dissolution and derivatization of ball-milled plant cell walls: high-resolution solution-state NMR. Plant J 35:535–544

    Article  PubMed  CAS  Google Scholar 

  • Mir Derikvand M, Sierra JB, Ruel K, Pollet B, Do C-T, Thévenin J, Buffard D, Jouanin L, Lapierre C (2008) Redirection of the phenylpropanoid pathway to feruloyl malate in Arabidopsis mutants deficient for cinnamoyl-CoA reductase 1. Planta 227:943–956

    Article  PubMed  CAS  Google Scholar 

  • Möller R, McDonald AG, Walter C, Harris PJ (2003) Cell differentiation, secondary cell-wall formation and transformation of callus tissue of Pinus radiata D. Don Planta 217:736–747

    Google Scholar 

  • Möller R, Steward D, Phillips L, Heather F, Wagner A (2005) Gene silencing of Cinnamyl Alcohol Dehydrogenase in Pinus radiata callus cultures. Plant Physiol Biochem 43:1061–1066

    Article  PubMed  Google Scholar 

  • Pasco MF, Suckling ID (1994) Lignin removal during Kraft pulping. An investigation by thiosacidolysis. Holzforschung 48:504–508

    Article  CAS  Google Scholar 

  • Pettersen RC, Schwandt VH (1991) Wood sugar analysis by anion chromatography. J Wood Chem Tech 11:495–501

    Google Scholar 

  • Ralph J, Hatfield RD (1991) Pyrolysis-GC/MS characterization of forage materials. J Agric Food Chem 39:1426–1437

    Article  CAS  Google Scholar 

  • Ralph J, MacKay JJ, Hatfield RD, O’Malley DM, Whetten RW, Sederoff RR (1997) Abnormal lignin in a loblolly pine mutant. Science 277:235–239

    Article  PubMed  CAS  Google Scholar 

  • Ralph J, Kim H, Lu F, Grabber JH, Leplé J-C, Berrio Sierra J, Mir Derikvand M, Jouanin L, Boerjan W, Lapierre C (2008) Identification of the structure and origin of a thioacidolysis marker compound for ferulic acid incorporation into angiosperm lignins (and an indicator for cinnamoyl-CoA reductase deficiency). Plant J 53:368–379

    Article  PubMed  CAS  Google Scholar 

  • Rencoret J, Gutiérrez A, Nieto L, Jiménez-Barbero J, Faulds CB, Kim H, Ralph J, Martínez ÁT, del Río JC (2011) Lignin composition and structure in young versus adult Eucalyptus globulus plants. Plant Physiol 155:667–682

    Article  PubMed  CAS  Google Scholar 

  • Savidge RA, Forster H (2001) Coniferyl alcohol metabolism in conifers—II. Coniferyl alcohol and dihydroconiferyl alcohol biosynthesis. Phytochem 57:1095–1103

    Article  CAS  Google Scholar 

  • Vanholme R, Van Acker R, Boerjan W (2010) Potential of Arabidopsis systems biology to advance the biofuel field. Trends Biotechnol 28:543–547

    Article  PubMed  CAS  Google Scholar 

  • Wadenbäck J, von Arnold S, Egertsdotter U, Walter MH, Grima-Pettenati J, Goffner D, Gellerstedt G, Gullion T, Clapham D (2008) Lignin biosynthesis in transgenic Norway spruce plants harboring an antisense construct for cinnamoyl CoA reductase (CCR). Transgenic Res 17:379–392

    Article  PubMed  Google Scholar 

  • Wagner A, Phillips L, Narayan RD, Moody JM, Geddes B (2005) Gene silencing studies in the gymnosperm species Pinus radiata. Plant Cell Rep 24:95–102

    Article  PubMed  CAS  Google Scholar 

  • Wagner A, Ralph J, Akiyama T, Flint H, Phillips L, Torr K, Nanayakkara N, Te Kiri L (2007) Exploring lignification in conifers by silencing hydroxycinnamoyl-CoA: shikimate hydroxycinnamoyltransferase in Pinus radiata. Proc Natl Acad Sci USA 104:11856–11861

    Article  PubMed  CAS  Google Scholar 

  • Wagner A, Donaldson L, Kim H, Flint H, Phillips L, Steward D, Torr K, Koch G, Schmitt U, Ralph J (2009) Suppression of 4-coumarate-CoA ligase in the coniferous gymnosperm Pinus radiata. Plant Physiol 149:370–383

    Article  PubMed  CAS  Google Scholar 

  • Wagner A, Tobimatsu Y, Phillips L, Flint H, Torr K, Donaldson L, Pears L, Ralph J (2011) CCoAOMT suppression modifies lignin composition in Pinus radiata. Plant J 67:119–129

    Article  PubMed  CAS  Google Scholar 

  • Wagner A, Donaldson L, Ralph J (2012) Lignification and lignin manipulations in conifers. Adv Bot Res 61:37–76

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded in part by grants C04X0207 and C04X0703 from the New Zealand Ministry of Science and Innovation. Funding for J.R. was from the DOE Great Lakes Bioenergy Research Center (DOE Office of Science BER DE-FC02-07ER64494). Y.T. was supported by a Postdoctoral Fellowship for Research Abroad provided by the Japan Society for the Promotion of Science. G.G. and W.B. thank the Research Foundation Flanders (Grant no. G.0352.05 N). The authors would like to thank Elspeth MacRae for critical reading of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Armin Wagner.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 936 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wagner, A., Tobimatsu, Y., Goeminne, G. et al. Suppression of CCR impacts metabolite profile and cell wall composition in Pinus radiata tracheary elements. Plant Mol Biol 81, 105–117 (2013). https://doi.org/10.1007/s11103-012-9985-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-012-9985-z

Keywords

Navigation