Skip to main content
Log in

A functional pectin methylesterase inhibitor protein (SolyPMEI) is expressed during tomato fruit ripening and interacts with PME-1

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

A pectin methylesterase inhibitor (SolyPMEI) from tomato has been identified and characterised by a functional genomics approach. SolyPMEI is a cell wall protein sharing high similarity with Actinidia deliciosa PMEI (AdPMEI), the best characterised inhibitor from kiwi. It typically affects the activity of plant pectin methylesterases (PMEs) and is inactive against a microbial PME. SolyPMEI transcripts were mainly expressed in flower, pollen and ripe fruit where the protein accumulated at breaker and turning stages of ripening. The expression of SolyPMEI correlated during ripening with that of PME-1, the major fruit specific PME isoform. The interaction of SolyPMEI with PME-1 was demonstrated in ripe fruit by gel filtration and by immunoaffinity chromatography. The analysis of the zonal distribution of PME activity and the co-localization of SolyPMEI with high esterified pectins suggest that SolyPMEI regulates the spatial patterning of distribution of esterified pectins in fruit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • An SH, Sohn KH, Choi HW, Hwang IS, Lee SC, Hwang BK (2008) Pepper pectin methylesterase inhibitor protein CaPMEI1 is required for antifungal activity, basal disease resistance and abiotic stress tolerance. Planta 228:61–78

    Article  PubMed  CAS  Google Scholar 

  • Atkinson RG, Bolitho KM, Wright MA, Iturriagagoitia-Bueno T, Reid SJ, Ross GS (1998) Apple ACC-oxidase and polygalacturonase: ripening-specific gene expression and promoter analysis in transgenic tomato. Plant Mol Biol 38:449–460

    Article  PubMed  CAS  Google Scholar 

  • Balestrieri C, Castaldo D, Giovane A, Quagliuolo L, Servillo L (1990) A glycoprotein inhibitor of pectin methylesterase in kiwi fruit (Actinidia chinensis). Eur J Biochem 193:183–187

    Article  PubMed  CAS  Google Scholar 

  • Bate N, Twell D (1998) Functional architecture of a late pollen promoter: pollen-specific transcription is developmentally regulated by multiple stage-specific and co-dependent activator elements. Plant Mol Biol 37:859–869

    Article  PubMed  CAS  Google Scholar 

  • Blumer JM, Clay RP, Bergmann CW, Albersheim P, Darvill A (2000) Characterization of changes in pectin methylesterase expression and pectin esterification during tomato fruit ripening. Can J Bot 78:607–618

    CAS  Google Scholar 

  • Bordenave M, Goldberg R (1993) Purification and characterization of pectin methylesterases from Mung bean hypocotyl cell walls. Phytochemistry 33:999–1003

    Article  CAS  Google Scholar 

  • Bosch M, Cheung AY, Hepler PK (2005) Pectin methylesterase, a regulator of pollen tube growth. Plant Physiol 138:1334–1346

    Article  PubMed  CAS  Google Scholar 

  • Brummell DA, Harpster MH (2001) Cell wall metabolism in fruit softening and quality and its manipulation in transgenic plants. Plant Mol Biol 47:311–340

    Article  PubMed  CAS  Google Scholar 

  • Camardella L, Carratore V, Ciardiello MA, Servillo L, Balestrieri C, Giovane A (2000) Kiwi protein inhibitor of pectin methylesterase amino-acid sequence and structural importance of two disulfide bridges. Eur J Biochem 267:4561–4565

    Article  PubMed  CAS  Google Scholar 

  • Cervone F, De Lorenzo G, Degrà L, Salvi G, Bergami M (1987) Purification and characterization of a polygalacturonase- inhibiting protein from Phaseolus vulgaris L. Plant Physiol 85:631–637

    Article  PubMed  CAS  Google Scholar 

  • Chen M-H, Citovsky V (2003) Systemic movement of a tobamovirus requires host cell pectin methylesterase. Plant J 35:386–392

    Article  PubMed  CAS  Google Scholar 

  • Ciardiello MA, D’Avino R, Amoresano A, Tuppo L, Carpentieri A, Carratore V, Tamburrini M, Giovane A, Pucci P, Camardella L (2008) The peculiar structural features of kiwi fruit pectin methylesterase: Amino acid sequence, oligosaccharides structure, and modeling of the interaction with its natural proteinaceous inhibitor. Proteins 71:195–206

    Article  PubMed  CAS  Google Scholar 

  • De Caroli M, Lenucci MS, Di Sansebastiano GP, Dalessandro G, De Lorenzo G, Piro G (2011) Protein trafficking to the cell wall occurs through mechanisms distinguishable from default sorting in tobacco. Plant Journal 65:295–308

    Article  PubMed  Google Scholar 

  • Di Matteo A, Giovane A, Raiola A, Camardella L, Bonivento D, De Lorenzo G, Cervone F, Bellincampi D, Tsernoglou D (2005) Structural basis for the interaction between pectin methylesterase and a specific inhibitor protein. Plant Cell 17:849–858

    Article  PubMed  Google Scholar 

  • Di Sansebastiano GP, Paris N, Marc-Martin S, Neuhaus JM (1998) Specific accumulation of GFP in a non-acidic vacuolar compartment via a C-terminal propeptide-mediated sorting pathway. Plant Journal 15:449–457

    Article  PubMed  Google Scholar 

  • Dorokhov YL, Makinen K, Frolova OY, Merits A, Saarinen J, Kalkkinen N, Atabekov JG, Saarma M (1999) A novel function for a ubiquitous plant enzyme pectin methylesterase: the host-cell receptor for the tobacco mosaic virus movement protein. FEBS Lett 461:223–228

    Article  PubMed  CAS  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  • Ferrari S, Galletti R, Pontiggia D, Manfredini C, Lionetti V, Bellincampi D, Cervone F, De Lorenzo G (2008) Transgenic expression of a fungal endo-polygalacturonase increases plant resistance to pathogens and reduces auxin sensitivity. Plant Physiol 146:669–681

    Article  PubMed  CAS  Google Scholar 

  • Futamura N, Mori H, Kouchi H, Shinohara K (2000) Male flower-specific expression of genes for polygalacturonase, pectin methylesterase and beta-1,3-glucanase in a dioecious willow (Salix gilgiana Seemen). Plant Cell Physiol 41:16–26

    Article  PubMed  CAS  Google Scholar 

  • Gaffe J, Tiznado ME, Handa AK (1997) Characterization and functional expression of a ubiquitously expressed tomato pectin methylesterase. Plant Physiol 114:1547–1556

    Article  PubMed  CAS  Google Scholar 

  • Giovane A, Balestrieri C, Quagliuolo L, Castaldo D, Servillo L (1995) A glycoprotein inhibitor of pectin methylesterase in kiwi fruit - Purification by affinity chromatography and evidence of a ripening-related precursor. Eur J Biochem 233:926–929

    Article  PubMed  CAS  Google Scholar 

  • Greer J (1990) Comparative modeling of proteins in the design of novel renin inhibitors. Biophys J 57:A207

    Article  Google Scholar 

  • Grsic-Rausch S, Rausch T (2004) A coupled spectrophotometric enzyme assay for the determination of pectin methylesterase activity and its inhibition by proteinaceous inhibitors. Anal Biochem 333:14–18

    Article  PubMed  CAS  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Hall LN, Bird CR, Picton S, Tucker GA, Seymour GB, Grierson D (1994) Molecular characterization of cDNA clones representing pectin esterase isozymes from tomato. Plant Mol Biol 25:313–318

    Article  PubMed  CAS  Google Scholar 

  • Hao YL, Huang XY, Mei XH, Li RY, Zhai ZY, Yin S, Huang Y, Luo YB (2008) Expression, purification and characterization of pectin methylesterase inhibitor from kiwi fruit in Escherichia coli. Protein Expr Purif 60:221–224

    Article  PubMed  CAS  Google Scholar 

  • Harriman RW, Tieman DM, Handa AK (1991) Molecular cloning of tomato pectin methylesterase gene and its expression in Rutgers, ripening inhibitor, nonripening, and never ripe tomato fruits. Plant Physiol 97:80–87

    Article  PubMed  CAS  Google Scholar 

  • Haseloff J, Siemering KR, Prasher DC, Hodge S (1997) Removal of a cryptic intron and subcellular localization of green fluorescent protein are required to mark transgenic Arabidopsis plants brightly. Proc Natl Acad Sci USA 94:2122–2127

    Article  PubMed  CAS  Google Scholar 

  • Hasunuma T, Fukusaki E, Kobayashi A (2004) Expression of fungal pectin methylesterase in transgenic tobacco leads to alteration in cell wall metabolism and a dwarf phenotype. J Biotechnol 111:241–251

    Article  PubMed  CAS  Google Scholar 

  • Hewezi T, Howe P, Maier TR, Hussey RS, Mitchum MG, Davis EL, Baum TJ (2008) Cellulose binding protein from the parasitic nematode Heterodera schachtii interacts with arabidopsis pectin methylesterase: cooperative cell wall modification during parasitism. Plant Cell 20:3080–3093

    Article  PubMed  CAS  Google Scholar 

  • Hong MJ, Kim DJ, Lee TG, Jeon WB, Seo YW (2010) Functional characterization of pectin methylesterase inhibitor (PMEI) in wheat. Genes Genet Syst 85:97–106

    Article  PubMed  CAS  Google Scholar 

  • Hothorn M, Van den Ende W, Lammens W, Rybin V, Scheffzek K (2010) Structural insights into the pH-controlled targeting of plant cell-wall invertase by a specific inhibitor protein. Proc Nat Acad Sci USA 107:17427–17432

    Article  PubMed  CAS  Google Scholar 

  • Irifune K, Nishida T, Egawa H, Nagatani A (2004) Pectin methylesterase inhibitor cDNA from kiwi fruit. Plant Cell Rep 22:333–338

    Article  Google Scholar 

  • Jolie RP, Duvetter T, Van Loey AM, Hendrickx ME (2010) Pectin methylesterase and its proteinaceous inhibitor: a review. Carbohydr Res 345:2583–2595

    Article  PubMed  CAS  Google Scholar 

  • Juge N (2006) Plant protein inhibitors of cell wall degrading enzymes. Trends Plant Sci 11:359–367

    Article  PubMed  CAS  Google Scholar 

  • Koch JL, Nevins DJ (1989) Tomato fruit cell wall. I. Use of purified tomato polygalacturonase and pectinmethylesterase to identify developmental changes in pectins. Plant Physiol 91:816–822

    Article  PubMed  CAS  Google Scholar 

  • Kojima K, Sakurai N, Kuraishi S, Yamamoto R, Nevins DJ (1991) Novel technique for measuring tissue firmness within tomato (Lycopersicon-Esculentum Mill) fruit. Plant Physiol 96:545–550

    Article  PubMed  CAS  Google Scholar 

  • Limberg G, Korner R, Buchholt HC, Christensen TM, Roepstorff P, Mikkelsen JD (2000) Analysis of different de-esterification mechanisms for pectin by enzymatic fingerprinting using endopectin lyase and endopolygalacturonase II from A. niger. Carbohydr Res 327:293–307

    Article  PubMed  CAS  Google Scholar 

  • Lionetti V, Raiola A, Camardella L, Giovane A, Obel N, Pauly M, Favaron F, Cervone F, Bellincampi D (2007) Overexpression of pectin methylesterase inhibitors in Arabidopsis restricts fungal infection by Botrytis cinerea. Plant Physiol 143:1871–1880

    Article  PubMed  CAS  Google Scholar 

  • Lionetti V, Francocci F, Ferrari S, Volpi C, Bellincampi D, Galletti R, D’Ovidio R, De Lorenzo G, Cervone F (2010) Engineering the cell wall by reducing de-methyl-esterified homogalacturonan improves saccharification of plant tissues for bioconversion. Proc Natl Acad Sci USA 107:616–621

    Article  PubMed  CAS  Google Scholar 

  • Lohaus G, Pennewiss K, Sattelmacher B, Hussmann M, Hermann MK (2001) Is the infiltration-centrifugation technique appropriate for the isolation of apoplastic fluid? A critical evaluation with different plant species. Physiol Plant 111:457–465

    Article  PubMed  CAS  Google Scholar 

  • Markovic O, Janecek S (2001) Pectin degrading glycoside hydrolases of family 28: sequence-structural features, specificities and evolution. Protein Eng 14:615–631

    Article  PubMed  CAS  Google Scholar 

  • Markovic O, Janecek S (2004) Pectin methylesterases: sequence-structural features and phylogenetic relationships. Carbohydr Res 339:2281–2295

    Article  PubMed  CAS  Google Scholar 

  • Markovic O, Jörnvall H (1986) Pectinesterase - the Primary Structure of the Tomato Enzyme. Eur J Biochem 158:455–462

    Article  PubMed  CAS  Google Scholar 

  • Matsudaira P (1987) Sequence from picomole quantities of proteins electroblotted onto polyvinylidene difluoride membranes. J Biol Chem 262:10035–10038

    PubMed  CAS  Google Scholar 

  • McCartney L, Ormerod AP, Gidley MJ, Knox JP (2000) Temporal and spatial regulation of pectic (1-4)-beta-D-galactan in cell walls of developing pea cotyledons: implications for mechanical properties. Plant J 22:105–113

    Article  PubMed  CAS  Google Scholar 

  • Mei XH, Hao YL, Zhu HL, Gao HY, Luo YB (2007) Cloning of pectin methylesterase inhibitor from kiwi fruit and its high expression in Pichia pastoris. Enzyme Microbial Technol 40:1001–1005

    Article  CAS  Google Scholar 

  • Mohnen D (2008) Pectin structure and biosynthesis. Curr Op Plant Biol 11:266–277

    Article  CAS  Google Scholar 

  • Montgomery J, Goldman S, Deikman J, Margossian L, Fischer RL (1993) Identification of an ethylene-responsive region in the promoter of a fruit ripening gene. Proc Natl Acad Sci USA 90:5939–5943

    Article  PubMed  CAS  Google Scholar 

  • Orfila C, Huisman MM, Willats WG, van Alebeek GJ, Schols HA, Seymour GB, Knox JP (2002) Altered cell wall disassembly during ripening of Cnr tomato fruit: implications for cell adhesion and fruit softening. Planta 215:440–447

    Article  PubMed  CAS  Google Scholar 

  • Peaucelle A, Louvet R, Johansen JN, Hofte H, Laufs P, Pelloux J, Mouille G (2008) Arabidopsis phyllotaxis is controlled by the methyl-esterification status of cell-wall pectins. Curr Biol 18:1943–1948

    Article  PubMed  CAS  Google Scholar 

  • Pelletier S, Van Orden J, Wolf S, Vissenberg K, Delacourt J, Ndong YA, Pelloux J, Bischoff V, Urbain A, Mouille G, Lemonnier G, Renou JP, Hofte H (2010) A role for pectin de-methylesterification in a developmentally regulated growth acceleration in dark-grown Arabidopsis hypocotyls. New Phytol 188:726–739

    Article  PubMed  CAS  Google Scholar 

  • Pelloux J, Rusterucci C, Mellerowicz EJ (2007) New insights into pectin methylesterase structure and function. Trends Plant Sci 12:267–277

    Article  PubMed  CAS  Google Scholar 

  • Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:e45

    Article  PubMed  CAS  Google Scholar 

  • Phan TD, Bo W, West G, Lycett GW, Tucker GA (2007) Silencing of the major salt-dependent isoform of pectinesterase in tomato alters fruit softening. Plant Physiol 144:1960–1967

    Article  PubMed  CAS  Google Scholar 

  • Pilling J, Willmitzer L, Bucking H, Fisahn J (2004) Inhibition of a ubiquitously expressed pectin methyl esterase in Solanum tuberosum L. affects plant growth, leaf growth polarity, and ion partitioning. Planta 219:32–40

    Article  PubMed  CAS  Google Scholar 

  • Pina C, Pinto F, Feijo JA, Becker JD (2005) Gene family analysis of the Arabidopsis pollen transcriptome reveals biological implications for cell growth, division control, and gene expression regulation. Plant Physiol 138:744–756

    Article  PubMed  CAS  Google Scholar 

  • Prasanna V, Prabha TN, Tharanathan RN (2007) Fruit ripening phenomena—an overview. Crit Rev Food Sci Nutr 47:1–19

    Article  PubMed  CAS  Google Scholar 

  • Pressey R, Avants JK (1972) Multiple forms of pectinesterase in tomatoes. Phytochemistry 11:3139–3142

    Article  CAS  Google Scholar 

  • Raiola A, Camardella L, Giovane A, Mattei B, De Lorenzo G, Cervone F, Bellincampi D (2004) Two Arabidopsis thaliana genes encode functional pectin methylesterase inhibitors. FEBS Lett 557:199–203

    Article  PubMed  CAS  Google Scholar 

  • Raiola A, Lionetti V, Elmaghraby I, Immerzeel P, Mellerowicz EJ, Salvi G, Cervone F, Bellincampi D (2011) Pectin methylesterase is induced in Arabidopsis upon infection and is necessary for a successful colonization by necrotrophic pathogens. Mol Plant-Microbe Interact 24:432–440

    Article  PubMed  CAS  Google Scholar 

  • Ray J, Knapp J, Grierson D, Bird C, Schuch W (1988) Identification and sequence determination of a cDNA clone for tomato pectin esterase. Eur J Biochem 174:119–124

    Article  PubMed  CAS  Google Scholar 

  • Reca IB, Brutus A, D’Avino R, Villard C, Bellincampi D, Giardina T (2008) Molecular cloning, expression and characterization of a novel apoplastic invertase inhibitor from tomato (Solanum lycopersicum) and its use to purify a vacuolar invertase. Biochimie 90:1611–1623

    Article  PubMed  CAS  Google Scholar 

  • Ren C, Kermode AR (2000) An increase in pectin methyl esterase activity accompanies dormancy breakage and germination of yellow cedar seeds. Plant Physiol 124:231–242

    Article  PubMed  CAS  Google Scholar 

  • Rockel N, Wolf S, Kost B, Rausch T, Greiner S (2008) Elaborate spatial patterning of cell-wall PME and PMEI at the pollen tube tip involves PMEI endocytosis, and reflects the distribution of esterified and de-esterified pectins. Plant J 53:133–143

    Article  PubMed  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  • Sali A, Blundell TL (1993) Comparative protein modeling by satisfaction of spatial restraints. J Mol Biol 234:779–815

    Article  PubMed  CAS  Google Scholar 

  • Scognamiglio MA, Ciardiello MA, Tamburrini M, Carratore V, Rausch T, Camardella L (2003) The plant invertase inhibitor shares structural properties and disulfide bridges arrangement with the pectin methylesterase inhibitor. J Prot Chem 22:363–369

    Article  CAS  Google Scholar 

  • Shevchenko A, Wilm M, Vorm O, Mann M (1996) Mass spectrometric sequencing of proteins from silver stained polyacrylamide gels. Anal Chem 68:850–858

    Article  PubMed  CAS  Google Scholar 

  • Sicilia F, Mattei B, Cervone F, Bellincampi D, De Lorenzo G (2005) Characterization of a membrane-associated apoplastic lipoxygenase in Phaseolus vulgaris L. Biochim Biophys Acta 1748:9–19

    PubMed  CAS  Google Scholar 

  • Steele NM, McCann MC, Roberts K (1997) Pectin modification in cell walls of ripening tomatoes occurs in distinct domains. Plant Physiol 114:373–381

    PubMed  CAS  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  PubMed  CAS  Google Scholar 

  • Tieman DM, Harriman RW, Ramamohan G, Handa AK (1992) An antisense pectin methylesterase gene alters pectin chemistry and soluble solids in tomato fruit. Plant Cell 4:667–679

    PubMed  CAS  Google Scholar 

  • Tucker GA, Robertson NG, Grierson D (1982) Purification and changes in activities of tomato pectinesterase isoenzymes. J Sci Fd Agric 33:396–400

    Article  CAS  Google Scholar 

  • Vandevenne E, Van Buggenhout S, Duvetter T, Brouwers E, Declerck PJ, Hendrickx ME, Van Loey A, Gils A (2009) Development and evaluation of monoclonal antibodies as probes to assess the differences between two tomato pectin methylesterase isoenzymes. J Immunol Meth 349:18–27

    Article  CAS  Google Scholar 

  • Vandevenne E, Christiaens S, Van Buggenhout S, Jolie RP, Gonzalez-Vallinas M, Duvetter T, Declerck PJ, Hendrickx ME, Gils A, Van Loey A (2011) Advances in understanding pectin methylesterase inhibitor in kiwi fruit: an immunological approach. Planta 233:287–298

    Article  PubMed  CAS  Google Scholar 

  • Verhertbruggen Y, Marcus SE, Haeger A, Ordaz-Ortiz JJ, Knox JP (2009) An extended set of monoclonal antibodies to pectic homogalacturonan. Carbohydr Res 344:1858–1862

    Article  PubMed  CAS  Google Scholar 

  • Volpi C, Janni M, Lionetti V, Bellincampi D, Favaron F, D’Ovidio R (2011) The ectopic expression of a pectin methyl esterase inhibitor increases pectin methyl esterification and limits fungal diseases in wheat. Mol Plant-Microbe Interact 24:1012–1019

    Article  PubMed  CAS  Google Scholar 

  • Wakabayashi K, Hoson T, Huber DJ (2003) Methyl de-esterification as a major factor regulating the extent of pectin depolymerization during fruit ripening: a comparison of the action of avocado (Persea americana) and tomato (Lycopersicon esculentum) polygalacturonases. J Plant Physiol 160:667–673

    Article  PubMed  CAS  Google Scholar 

  • Wakeley PR, Rogers HJ, Rozycka M, Greenland AJ, Hussey PJ (1998) A maize pectin methylesterase-like gene, ZmC5, specifically expressed in pollen. Plant Mol Biol 37:187–192

    Article  PubMed  CAS  Google Scholar 

  • Wolf S, Grsic-Rausch S, Rausch T, Greiner S (2003) Identification of pollen-expressed pectin methylesterase inhibitors in Arabidopsis. FEBS Lett 555:551–555

    Article  PubMed  CAS  Google Scholar 

  • Wolf S, Mouille G, Pelloux J (2009) Homogalacturonan methyl-esterification and plant development. Mol Plant 2:851–860

    Article  PubMed  CAS  Google Scholar 

  • Yin XR, Allan AC, Chen KS, Ferguson IB (2010) Kiwifruit EIL and ERF Genes Involved in Regulating Fruit Ripening. Plant Physiol 153:1280–1292

    Article  PubMed  CAS  Google Scholar 

  • Zhang GY, Feng J, Wu J, Wang XW (2010) BoPMEI1, a pollen-specific pectin methylesterase inhibitor, has an essential role in pollen tube growth. Planta 231:1323–1334

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Prof. J. P. Knox for providing LM20 antibodies and Prof. M. E. Hendrickx for MA-TOM1-41B2 antibodies. This work was supported by the European Research Council (ERC Advanced Grant No. 233083), grant (C26A09RCP9) by “Sapienza” University of Rome, and by the Italian Ministry of Foreign Affairs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniela Bellincampi.

Additional information

Ida Barbara Reca and Vincenzo Lionetti contributed equally and are considered co-first authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11103_2012_9921_MOESM1_ESM.ppt

Suppl. Figure 1 Nucleotide and deduced amino acid sequences of the SolyPMEI gene. Signal peptide end is indicated with a slash and the stop codon is marked with an asterisk. Putative N-glycosylation sites are gray boxed and sequence identified by 3′RACE is in bold and underlined and Arg 151 residue is highlighted. (PPT 6524 kb)

11103_2012_9921_MOESM2_ESM.ppt

Suppl. Figure 2 Motif analysis of SolyPMEI 5′ flanking region (-1500 bp). Red indicated AGAAA motif, green indicated CAAT box, yellow indicated TATA box and gray indicated AWTTCAA motif (PPT 6314 kb)

11103_2012_9921_MOESM3_ESM.ppt

Suppl. Figure 3 Circular dichroism spectra of SolyPMEI (continuous line) and AdPMEI from kiwi (dotted line) (PPT 6376 kb)

11103_2012_9921_MOESM4_ESM.ppt

Suppl. Figure 4 Sequence of tryptic fragments obtained by LS MS/MS analysis. Matched peptides are in bold and underlined (PPT 6302 kb)

11103_2012_9921_MOESM5_ESM.ppt

Suppl. Figure 5 Structural superimposition between SolyPMEI and AdPMEI. a Superimposition of Cα of all aligned residues of the SolyPMEI model (red) and AdPMEI structure (blue) (PDB code, 1XG2:B) (147 atoms) gave a RMSD of 0.13Å, indicating that SolyPMEI amino acid sequence well fits into the AdPMEI structure. No SolyPMEI residues were found out of the allowed regions of the Ramachandran plot; b PME-1/SolyPMEI model. PME-1 (left) is shown in blue and SolyPMEI (right) is shown in red. Glycosylated Asn residues of SolyPMEI are indicated (green) (PPT 6445 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reca, I.B., Lionetti, V., Camardella, L. et al. A functional pectin methylesterase inhibitor protein (SolyPMEI) is expressed during tomato fruit ripening and interacts with PME-1. Plant Mol Biol 79, 429–442 (2012). https://doi.org/10.1007/s11103-012-9921-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-012-9921-2

Keywords

Navigation