Skip to main content
Log in

Knock-down of the COX3 and COX17 gene expression of cytochrome c oxidase in the unicellular green alga Chlamydomonas reinhardtii

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

The COX3 gene encodes a core subunit of mitochondrial cytochrome c oxidase (complex IV) whereas the COX17 gene encodes a chaperone delivering copper to the enzyme. Mutants of these two genes were isolated by RNA interference in the microalga Chlamydomonas. The COX3 mRNA was completely lacking in the cox3-RNAi mutant and no activity and assembly of complex IV were detected. The cox17-RNAi mutant presented a reduced level of COX17 mRNA, a reduced activity of the cytochrome c oxidase but no modification of its amount. The cox3-RNAi mutant had only 40% of the wild-type rate of dark respiration which was cyanide-insensitive. The mutant presented a 60% decrease of H2O2 production in the dark compared to wild type, which probably accounts for a reduced electron leakage by respiratory complexes III and IV. In contrast, the cox17-RNAi mutant showed no modification of respiration and of H2O2 production in the dark but a two to threefold increase of H2O2 in the light compared to wild type and the cox3-RNAi mutant. The cox17-RNAi mutant was more sensitive to cadmium than the wild-type and cox3-RNAi strains. This suggested that besides its role in complex IV assembly, Cox17 could have additional functions in the cell such as metal detoxification or Reactive Oxygen Species protection or signaling. Concerning Cox3, its role in Chlamydomonas complex IV is similar to that of other eukaryotes although this subunit is encoded in the nuclear genome in the alga contrary to the situation found in all other organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Attallah CV, Welchen E, Gonzalez DH (2007) The promoters of Arabidopsis thaliana genes AtCOX17–1 and -2, encoding a copper chaperone involved in cytochrome c oxidase biogenesis, are preferentially active in roots and anthers and induced by biotic and abiotic stress. Physiol Plant 129:123–134

    Article  CAS  Google Scholar 

  • Balaban RS, Nemoto S, Finkel T (2005) Mitochondria, oxidants, and aging. Cell 120:483–495

    Article  CAS  PubMed  Google Scholar 

  • Balandin T, Castresana C (2002) AtCOX17, an Arabidopsis homolog of the yeast copper chaperone COX17. Plant Physiol 129:1852–1857

    Article  CAS  PubMed  Google Scholar 

  • Barros MH, Johnson A, Tzagoloff A (2004) COX23, a homologue of COX17, is required for cytochrome oxidase assembly. J Biol Chem 279:31943–31947

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Cardol P, Matagne RF, Remacle C (2002) Impact of mutations affecting ND mitochondria-encoded subunits on the activity and assembly of complex I in Chlamydomonas. Implication for the structural organization of the enzyme. J Mol Biol 319:1211–1221

    Article  CAS  PubMed  Google Scholar 

  • Cardol P, Vanrobaeys F, Devreese B, Van Beeumen J, Matagne RF, Remacle C (2004) Higher plant-like subunit composition of mitochondrial complex I from Chlamydomonas reinhardtii: 31 conserved components among eukaryotes. Biochim Biophys Acta 1658:212–224

    Article  CAS  PubMed  Google Scholar 

  • Cardol P, González-Halphen D, Reyes-Prieto A, Baurain D, Matagne RF, Remacle C (2005) The mitochondrial oxidative phosphorylation proteome of Chlamydomonas reinhardtii deduced from the Genome Sequencing Project. Plant Physiol 137:447–459

    Article  CAS  PubMed  Google Scholar 

  • Cardol P, Lapaille M, Minet P, Franck F, Matagne RF, Remacle C (2006) ND3 and ND4L subunits of mitochondrial complex I, both nucleus-encoded in Chlamydomonas reinhardtii, are required for activity and assembly of the enzyme. Eukaryot Cell 5:1460–1467

    Article  CAS  PubMed  Google Scholar 

  • Cardol P, Figueroa F, Remacle C, Franzén L-G, González-Halphen D (2008) Oxidative phosphorylation: Building blocks and related compounds. In: The Chlamydomonas sourcebook, 2nd edn. Elsevier, Oxford, pp 469–502

  • Cardol P, Alric J, Girard-Bascou J, Franck F, Wollman FA, Finazzi G (2009) Impaired respiration discloses the physiological significance of state transitions in Chlamydomonas. Proc Natl Acad Sci USA 106:15979–15984

    Article  CAS  PubMed  Google Scholar 

  • Daley DO, Adams KL, Clifton R, Qualmann S, Millar AH, Palmer JD, Pratje E, Whelan J (2002) Gene transfer from mitochondrion to nucleus: novel mechanisms for gene activation from Cox2. Plant J 30:11–21

    Article  CAS  PubMed  Google Scholar 

  • Duby F, Matagne RF (1999) Alteration of dark respiration and reduction of phototrophic growth in a mitochondrial DNA deletion mutant of Chlamydomonas lacking cob, nd4, and the 3′ end of nd5. Plant Cell 11:115–125

    Article  CAS  PubMed  Google Scholar 

  • Eubel H, Jänsch L, Braun HP (2003) New insights into the respiratory chain of plant mitochondria. Supercomplexes and a unique composition of complex II. Plant Physiol 133:274–286

    Article  CAS  PubMed  Google Scholar 

  • Fan J, Lee RW (2002) Mitochondrial genome of the colorless green alga Polytomella parva: two linear DNA molecules with homologous inverted repeat termini. Mol Biol Evol 19:999–1007

    CAS  PubMed  Google Scholar 

  • Förster B, Osmond CB, Pogson BJ (2005) Improved survival of very high light and oxidative stress is conferred by spontaneous gain-of-function mutations in Chlamydomonas. Biochim Biophys Acta 1709:45–57

    Article  PubMed  CAS  Google Scholar 

  • Fuhrmann M, Stahlberg A, Govorunova E, Rank S, Hegemann P (2001) The abundant retinal protein of the Chlamydomonas eye is not the photoreceptor for phototaxis and photophobic responses. J Cell Sci 114:3857–3863

    CAS  PubMed  Google Scholar 

  • Gillet S, Decottignies P, Chardonnet S, Le Maréchal P (2006) Cadmium response and redoxin targets in Chlamydomonas reinhardtii: a proteomic approach. Photosynth Res 89:201–211

    Article  CAS  PubMed  Google Scholar 

  • Glerum DM, Shtanko A, Tzagoloff A (1996) Characterization of COX17, a yeast gene involved in copper metabolism and assembly of cytochrome oxidase. J Biol Chem 271:14504–14509

    Article  CAS  PubMed  Google Scholar 

  • Hanikenne M, Motte P, Wu MCS, Wang T, Loppes R, Matagne RF (2005) A mitochondrial half-size ABC transporter is involved in cadmium tolerance in Chlamydomonas reinhardtii. Plant Cell Environ 28:863–873

    Article  CAS  Google Scholar 

  • Harris E (1989) The Chlamydomonas sourcebook. Academic Press, London

    Google Scholar 

  • Hoffbuhr KC, Davidson E, Filiano BA, Davidson M, Kennaway NG, King MP (2000) A pathogenic 15-base pair deletion in mitochondrial DNA-encoded cytochrome c oxidase subunit III results in the absence of functional cytochrome c oxidase. J Biol Chem 275:13994–14003

    Article  CAS  PubMed  Google Scholar 

  • Holser JP (2004) The influence of subunit III of cytochrome c oxidase on the D pathway, the proton exit pathway and mechanism based inactivation in subunit I. Biochim Biophys Acta 1655:332–339

    Article  CAS  Google Scholar 

  • Holser JP, Ferguson-Miller S, Mills DA (2006) Energy transduction: proton transfer through the respiratory complexes. Annu Rev Biochem 75:165–187

    Article  CAS  Google Scholar 

  • Horng YC, Cobine PA, Maxfield AB, Carr HS, Winge DR (2004) Specific copper transfer from the Cox17 metallochaperone to both Sco1 and Cox11 in the assembly of yeast cytochrome c oxidase. J Biol Chem 279:35334–35340

    Article  CAS  PubMed  Google Scholar 

  • Jamers A, Van der Ven K, Lotte M, Robbens J, Potters G, Guisez Y, Blust R, De Coen W (2006) Effect of copper exposure on gene expression profiles in Chlamydomonas reinhardtii based on microarray analysis. Aquat Toxicol 80:249–260

    Article  CAS  PubMed  Google Scholar 

  • Keightley JA, Hoffbuhr KC, Burton MD, Salas VM, Johnston WS, Penn AM, Buist NR, Kennaway NG (1996) A microdeletion in cytochrome c oxidase (COX) subunit III associated with COX deficiency and recurrent myoglobinuria. Nat Genet 12:410–416

    Article  CAS  PubMed  Google Scholar 

  • Kindle KL (1990) High-frequency nuclear transformation of Chlamydomonas reinhardtii. Proc Natl Acad Sci USA 87:1228–1232

    Article  CAS  PubMed  Google Scholar 

  • Lapaille M, Escobar-Ramirez A, Degand H, Baurain D, Rodriguez-Salinas E, Coosemans N, Boutry M, González-Halphen D, Remacle C, Cardol P (2010) Atypical composition of the chlorophycean mitochondrial F1FO ATP synthase and role of the Asa7 protein in stability and oligomycin resistance of the enzyme. Mol Biol Evol 27:1630–1644

    Article  CAS  PubMed  Google Scholar 

  • Leary SC, Kaufman BA, Pellecchia G, Guercin GH, Mattman A, Jaksch M, Shoubridge EA (2004) Human SCO1 and SCO2 have independent, cooperative functions in copper delivery to cytochrome c oxidase. Hum Mol Genet 13:1839–1848

    Article  CAS  PubMed  Google Scholar 

  • Loppes R, Radoux M (2002) Two short regions of the promoter are essential for activation and repression of the nitrate reductase gene in Chlamydomonas reinhardtii. Mol Genet Genomics 268:42–48

    Article  CAS  PubMed  Google Scholar 

  • Mages W, Heinrich O, Treuner G, Vlcek D, Daubnerova I, Slaninova M (2007) Complementation of the Chlamydomonas reinhardtii arg7-8 (arg2) point mutation by recombination with a truncated nonfunctional ARG7 gene. Protist 158:435–446

    Article  CAS  PubMed  Google Scholar 

  • Merchant SS, Prochnik SE, Vallon O, Harris EH, Karpowicz SJ, Witman GB, Terry A, Salamov A, Fritz-Laylin LK, Maréchal-Drouard L, Marshall WF, Qu LH, Nelson DR, Sanderfoot AA, Spalding MH, Kapitonov VV, Ren Q, Ferris P, Lindquist E, Shapiro H, Lucas SM, Grimwood J, Schmutz J, Cardol P, Cerutti H, Chanfreau G, Chen CL, Cognat V, Croft MT, Dent R, Dutcher S, Fernández E, Fukuzawa H, González-Ballester D, González-Halphen D, Hallmann A, Hanikenne M, Hippler M, Inwood W, Jabbari K, Kalanon M, Kuras R, Lefebvre PA, Lemaire SD, Lobanov AV, Lohr M, Manuell A, Meier I, Mets L, Mittag M, Mittelmeier T, Moroney JV, Moseley J, Napoli C, Nedelcu AM, Niyogi K, Novoselov SV, Paulsen IT, Pazour G, Purton S, Ral JP, Riaňo-Pachon DM, Riekhof W, Rymarquis L, Schroda M, Stern D, Umen J, Willows R, Wilson N, Zimmer SL, Allmer J, Balk J, Bisova K, Chen CJ, Elias M, Gendler K, Hauser C, Lamb MR, Ledford H, Long JC, Minagawa J, Page MD, Pan J, Pootakham W, Roje S, Rose A, Stahlberg E, Terauchi AM, Yang P, Ball S, Bowler C, Dieckmann CL, Gladyshev VN, Green P, Jorgensen R, Mayfield S, Mueller-Roeber B, Rajamani S, Sayre RT, Brokstein P, Dubchak I, Goodstein D, Hornick L, Huang YW, Jhaveri J, Luo Y, Martinez D, Ngau WC, Otillar B, Poliakov A, Porter A, Szajkowski L, Werner G, Zhou K, Grigoriev IV, Rokhsar DS, Grossman AR (2007) The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science 318:245–250

    Article  CAS  PubMed  Google Scholar 

  • Meunier B (2001) Site-directed mutations in the mitochondrially encoded subunits I and III of yeast cytochrome oxidase. Biochem J 354:407–412

    Article  CAS  PubMed  Google Scholar 

  • Michaelis G, Vahrenholz C, Pratje E (1990) Mitochondrial DNA of Chlamydomonas reinhardtii: the gene for apocytochrome b and the complete functional map of the 15.8 kb DNA. Mol Gen Genet 223:211–216

    CAS  PubMed  Google Scholar 

  • Newman SM, Boynton JE, Gillham NW, Randolph-Anderson BL, Johnson AM, Harris EH (1990) Transformation of chloroplast ribosomal RNA genes in Chlamydomonas: molecular and genetic characterization of integration events. Genetics 126:875–888

    CAS  PubMed  Google Scholar 

  • Nobrega MP, Bandeira SC, Beers J, Tzagoloff A (2002) Characterization of COX19, a widely distributed gene required for expression of mitochondrial cytochrome oxidase. J Biol Chem 277:40206–40211

    Article  CAS  PubMed  Google Scholar 

  • Oswald C, Krause-Buchholz U, Rodel G (2009) Knockdown of human COX17 affects assembly and supramolecular organization of cytochrome c oxidase. J Mol Biol 389:470–479

    Article  CAS  PubMed  Google Scholar 

  • Palumaa P, Kangur L, Voronova A, Sillard D (2004) Metal-binding mechanism of Cox17, a copper chaperone for cytochrome c oxidase. Biochem J 382:307–314

    Article  CAS  PubMed  Google Scholar 

  • Pérez-Martinez X, Vazquez-Acevedo M, Tolkunova E, Funes S, Claros MG, Davidson E, King MP, González-Halphen D (2000) Unusual location of a mitochondrial gene. Subunit III of cytochrome c oxidase is encoded in the nucleus of Chlamydomonad algae. J Biol Chem 275:30144–30152

    Article  PubMed  Google Scholar 

  • Pérez-Martinez X, Antaramian A, Vazquez-Acevedo M, Funes S, Tolkunova E, d’Alayer J, Claros MG, Davidson E, King MP, González-Halphen D (2001) Subunit II of cytochrome c oxidase in Chlamydomonad algae is a heterodimer encoded by two independent nuclear genes. J Biol Chem 276:11302–11309

    Article  PubMed  Google Scholar 

  • Pulich WM, Ward CH (1973) Physiology and ultrastructure of an oxygen-resistant Chlorella mutant under heterotrophic conditions. Plant Physiol 51:337–344

    Article  CAS  PubMed  Google Scholar 

  • Quinn J, Li HH, Singer J, Morimoto B, Mets L, Kindle K, Merchant S (1993) The plastocyanin-deficient phenotype of Chlamydomonas reinhardtii Ac-208 results from a frame-shift mutation in the nuclear gene encoding preapoplastocyanin. J Biol Chem 268:7832–7841

    CAS  PubMed  Google Scholar 

  • Quinn JM, Barraco P, Eriksson M, Merchant S (2000) Coordinate copper- and oxygen-responsive Cyc6 and Cpx1 expression in Chlamydomonas is mediated by the same element. J Biol Chem 275:6080–6089

    Article  CAS  PubMed  Google Scholar 

  • Remacle C, Baurain D, Cardol P, Matagne RF (2001a) a Mutants of Chlamydomonas reinhardtii deficient in mitochondrial complex I: characterization of two mutations affecting the nd1 coding sequence. Genetics 158:1051–1060

    CAS  PubMed  Google Scholar 

  • Remacle C, Duby F, Cardol P, Matagne RF (2001b) b Mutations inactivating mitochondrial genes in Chlamydomonas reinhardtii. Biochem Soc Trans 29:442–446

    Article  CAS  PubMed  Google Scholar 

  • Remacle C, Gloire G, Cardol P, Matagne RF (2004) Impact of a mutation in the mitochondrial LSU rRNA gene from Chlamydomonas reinhardtii on the activity and the assembly of respiratory-chain complexes. Curr Genet 45:323–330

    Article  CAS  PubMed  Google Scholar 

  • Remacle C, Cardol P, Coosemans N, Gaisne M, Bonnefoy N (2006) High-efficiency biolistic transformation of Chlamydomonas mitochondria can be used to insert mutations in complex I genes. Proc Natl Acad Sci USA 103:4771–4776

    Article  CAS  PubMed  Google Scholar 

  • Schägger H, von Jagow G (1991) Blue native electrophoresis for isolation of membrane protein complexes in enzymatically active form. Anal Biochem 199:223–231

    Article  PubMed  Google Scholar 

  • Schroda M (2006) RNA silencing in Chlamydomonas: mechanisms and tools. Curr Genet 49:69–84

    Article  CAS  PubMed  Google Scholar 

  • Taanman JW, Capaldi RA (1992) Purification of yeast cytochrome c oxidase with a subunit composition resembling the mammalian enzyme. J Biol Chem 267:22481–22485

    CAS  PubMed  Google Scholar 

  • van Lis R, Atteia A, Mendoza-Hernandez G, González-Halphen D (2003) Identification of novel mitochondrial components of Chlamydomonas reinhardtii. A proteomic approach. Plant Physiol 132:318–330

    Article  PubMed  CAS  Google Scholar 

  • Watanabe M, Henmi K, Ogawa K, Suzuki T (2003) Cadmium-dependent generation of reactive oxygen species and mitochondrial DNA breaks in photosynthetic and non-photosynthetic strains of Euglena gracilis. Comp Biochem Phys Part C Toxicol Pharmacol 134:227–234

    Article  Google Scholar 

  • Wilson KS, Prochaska LJ (1990) Phospholipid vesicles containing bovine heart mitochondrial cytochrome c oxidase and subunit III-deficient enzyme: analysis of respiratory control and proton translocation activities. Arch Biochem Biophys 282:413–420

    Article  CAS  PubMed  Google Scholar 

  • Yanamura W, Zhang YZ, Takamiya S, Capaldi RA (1988) Tissue-specific differences between heart and liver cytochrome c oxidase. Biochemistry 27:4909–4914

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from Fonds de la Recherche Scientifique from Belgium (F.R.S.-FNRS) 1.5.255.08 and 2.4601.08 (C.R.), 1.C057.09 and F.4735.06 to PC, 2.4638.05 (C.R. and P.M.) and 2.4583.08 (M.H and P.M.) and by Action de Recherche Concertée ARC07/12 04 (C.R.). The authors warmly thank Giovanni Finazzi for help with the JTS-10 spectrophotometer device and Michèle Radoux for technical assistance. P.C. and M.H. are F.R.S.-FNRS research associate and Postdoctoral Researcher of the “Fonds de la Recherche Scientifique—FNRS”, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claire Remacle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Remacle, C., Coosemans, N., Jans, F. et al. Knock-down of the COX3 and COX17 gene expression of cytochrome c oxidase in the unicellular green alga Chlamydomonas reinhardtii . Plant Mol Biol 74, 223–233 (2010). https://doi.org/10.1007/s11103-010-9668-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-010-9668-6

Keywords

Navigation