Skip to main content
Log in

Editing of accD and ndhF chloroplast transcripts is partially affected in the Arabidopsis vanilla cream1 mutant

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

The vanilla cream1 (vac1) albino mutant is defective in a gene encoding a chloroplast-localized pentatricopeptide repeat protein of the DYW subgroup. However, the carboxyl-terminal DYW motif is truncated in VAC1. To identify vac1-specific phenotypes, we compared 34 chloroplast RNA editing sites and ~90 chloroplast gene expression patterns among wild type, vac1 and another albino mutant ispH, which is defective in the plastid isoprenoid biosynthesis pathway. We found that the editing of accD and ndhF transcripts is partially affected in vac1. In addition, steady-state levels of chloroplast rRNAs are significantly decreased in vac1. The expression of plastid-encoded RNA polymerase transcribed genes is down-regulated, whereas the expression of nucleus-encoded RNA polymerase transcribed genes is up-regulated in vac1. Although the development and function of mutant chloroplasts are severely impaired, steady-state mRNA levels of nucleus-encoded photosynthetic genes are not affected or are only slightly decreased in vac1. The ZAT10 gene encodes a transcription factor and its expression is down-regulated by norflurazon treatment in wild type. This norflurazon effect was not observed in vac1. These results suggest that the VAC1 protein may be involved in plastid-to-nucleus retrograde signaling in addition to its role in chloroplast RNA editing and gene expression. A defect in a key biosynthetic pathway can have many indirect effects on chloroplast gene expression as is seen in the ispH mutant. Similarly, the vac1 mutant has pleiotropic molecular phenotypes and most of which may be indirect effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Allison LA, Simon LD, Maliga P (1996) Deletion of rpoB reveals a second distinct transcription system in plastids of higher plants. EMBO J 15:2802–2809

    CAS  PubMed  Google Scholar 

  • Barkan A, Walker M, Nolasco M, Johnson D (1994) A nuclear mutation in maize blocks the processing and translation of several chloroplast mRNAs and provides evidence for the differential translation of alternative mRNA forms. EMBO J 13:3170–3181

    CAS  PubMed  Google Scholar 

  • Beick S, Schmitz-Linneweber C, Williams-Carrier R, Jensen B, Barkan A (2008) The pentatricopeptide repeat protein PPR5 stabilizes a specific tRNA precursor in maize chloroplasts. Mol Cell Biol 28:5337–5347

    Article  CAS  PubMed  Google Scholar 

  • Cai W, Ji D, Peng L, Guo J, Ma J, Zou M, Lu C, Zhang L (2009) LPA66 is required for editing psbF chloroplast transcripts in Arabidopsis. Plant Physiol 150:1260–1271

    Article  CAS  PubMed  Google Scholar 

  • Chateigner-Boutin AL, Small I (2007) A rapid high-throughput method for the detection and quantification of RNA editing based on high-resolution melting of amplicons. Nucleic Acids Res 35:e114

    Article  PubMed  Google Scholar 

  • Chateigner-Boutin AL, Ramos-Vega M, Guevara-García A, Andrés C, de la Luz Gutiérrez-Nava M, Cantero A, Delannoy E, Jiménez LF, Lurin C, Small I, León P (2008) CLB19, a pentatricopeptide repeat protein required for editing of rpoA and clpP chloroplast transcripts. Plant J 56:590–602

    Article  CAS  PubMed  Google Scholar 

  • Chi W, Ma J, Zhang D, Guo J, Chen F, Lu C, Zhang L (2008) The pentratricopeptide repeat protein DELAYED GREENING1 is involved in the regulation of early chloroplast development and chloroplast gene expression in Arabidopsis. Plant Physiol 147:573–584

    Article  CAS  PubMed  Google Scholar 

  • Chiu W, Niwa Y, Zeng W, Hirano T, Kobayashi H, Sheen J (1996) Engineered GFP as a vital reporter in plants. Curr Biol 6:325–330

    Article  CAS  PubMed  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  CAS  PubMed  Google Scholar 

  • de Longevialle AF, Meyer EH, Andrés C, Taylor NL, Lurin C, Millar AH, Small ID (2007) The pentatricopeptide repeat gene OTP43 is required for trans-splicing of the mitochondrial nad1 Intron 1 in Arabidopsis thaliana. Plant Cell 19:3256–3265

    Article  PubMed  Google Scholar 

  • de Longevialle AF, Hendrickson L, Taylor NL, Delannoy E, Lurin C, Badger M, Millar AH, Small I (2008) The pentatricopeptide repeat gene OTP51 with two LAGLIDADG motifs is required for the cis-splicing of plastid ycf3 intron 2 in Arabidopsis thaliana. Plant J 56:157–168

    Article  PubMed  Google Scholar 

  • De Santis-MacIossek G, Kofer W, Bock A, Schoch S, Maier RM, Wanner G, Rudiger W, Koop HU, Herrmann RG (1999) Targeted disruption of the plastid RNA polymerase genes rpoA, B and C1: molecular biology, biochemistry and ultrastructure. Plant J 18:477–489

    Article  PubMed  Google Scholar 

  • Delannoy E, Stanley WA, Bond CS, Small ID (2007) Pentatricopeptide repeat (PPR) proteins as sequence-specificity factors in post-transcriptional processes in organelles. Biochem Soc Trans 35:1643–1647

    Article  CAS  PubMed  Google Scholar 

  • Fisk DG, Walker MB, Barkan A (1999) Molecular cloning of the maize gene crp1 reveals similarity between regulators of mitochondrial and chloroplast gene expression. EMBO J 18:2621–2630

    Article  CAS  PubMed  Google Scholar 

  • Gong Z, Koiwa H, Cushman MA, Ray A, Bufford D, Kore-eda S, Matsumoto TK, Zhu J, Cushman JC, Bressan RA, Hasegawa PM (2001) Genes that are uniquely stress regulated in salt overly sensitive (sos) mutants. Plant Physiol 126:363–375

    Article  CAS  PubMed  Google Scholar 

  • Hajdukiewicz PT, Allison LA, Maliga P (1997) The two RNA polymerases encoded by the nuclear and the plastid compartments transcribe distinct groups of genes in tobacco plastids. EMBO J 16:4041–4048

    Article  CAS  PubMed  Google Scholar 

  • Hammani K, Okuda K, Tanz SK, Chateigner-Boutin AL, Shikanai T, Small I (2009) A study of new Arabidopsis chloroplast RNA editing mutants reveals general features of editing factors and their target sites. Plant Cell 21:3686–3699

    Article  CAS  PubMed  Google Scholar 

  • Hanaoka M, Kanamaru K, Fujiwara M, Takahashi H, Tanaka K (2005) Glutamyl-tRNA mediates a switch in RNA polymerase use during chloroplast biogenesis. EMBO Rep 6:545–550

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto M, Endo T, Peltier G, Tasaka M, Shikanai T (2003) A nucleus-encoded factor, CRR2, is essential for the expression of chloroplast ndhB in Arabidopsis. Plant J 6:541–549

    Article  Google Scholar 

  • Hattori M, Miyake H, Sugita M (2007) A pentatricopeptide repeat protein is required for RNA processing of clpP Pre-mRNA in moss chloroplasts. J Biol Chem 282:10773–10782

    Article  CAS  PubMed  Google Scholar 

  • Hedtke B, Börner T, Weihe A (1997) Mitochondrial and chloroplast phage type RNA polymerases in Arabidopsis. Science 277:809–811

    Article  CAS  PubMed  Google Scholar 

  • Hess WR, Börner T (1999) Organellar RNA polymerases of higher plants. Int Rev Cytol 190:1–59

    Article  CAS  PubMed  Google Scholar 

  • Hess WR, Prombona A, Fieder B, Subramanian AR, Börner T (1993) Chloroplast rps15 and the rpoB/C1/C2 gene cluster are strongly transcribed in ribosome-deficient plastids: evidence for a functioning non-chloroplast-encoded RNA polymerase. EMBO J 12:563–571

    CAS  PubMed  Google Scholar 

  • Hsieh MH, Goodman HM (2002) Molecular characterization of a novel gene family encoding ACT domain repeat proteins in Arabidopsis. Plant Physiol 130:1797–1806

    Article  CAS  PubMed  Google Scholar 

  • Hsieh MH, Goodman HM (2005) The Arabidopsis IspH homolog is involved in the plastid nonmevalonate pathway of isoprenoid biosynthesis. Plant Physiol 138:641–653

    Article  CAS  PubMed  Google Scholar 

  • Hu J, Bogorad L (1990) Maize chloroplast RNA polymerase: The 180-, 120-, and 38-kilodalton polypeptides are encoded in chloroplast genes. Proc Natl Acad Sci USA 87:1531–1535

    Article  CAS  PubMed  Google Scholar 

  • Igloi GL, Kössel H (1992) The transcriptional apparatus of chloroplast. CRC Crit Rev Plant Sci 10:525–558

    Article  CAS  Google Scholar 

  • Jackson AO, Larkins BA (1976) Influence of ionic strength, pH, and chelation of divalent metals on isolation of polyribosomes from tobacco leaves. Plant Physiol 57:5–10

    Article  CAS  PubMed  Google Scholar 

  • Kishine M, Takabayashi A, Munekage Y, Shikanai T, Endo T, Sato F (2004) Ribosomal RNA processing and an RNase R family member in chloroplasts of Arabidopsis. Plant Mol Biol 55:595–606

    Article  CAS  PubMed  Google Scholar 

  • Kode V, Mudd EA, Iamtham S, Day A (2005) The tobacco plastid accD gene is essential and is required for leaf development. Plant J 44:237–244

    Article  CAS  PubMed  Google Scholar 

  • Kotera E, Tasaka M, Shikanai T (2005) A pentatricopeptide repeat protein is essential for RNA editing in chloroplasts. Nature 433:326–330

    Article  CAS  PubMed  Google Scholar 

  • Koussevitzky S, Nott A, Mockler TC, Hong F, Sachetto-Martins G, Surpin M, Lim J, Mittler R, Chory J (2007) Signals from chloroplasts converge to regulate nuclear gene expression. Science 316:715–719

    Article  CAS  PubMed  Google Scholar 

  • Krause K, Maier RM, Kofer W, Krupinska K, Herrmann RG (2000) Disruption of plastid-encoded RNA polymerase genes in tobacco: expression of only a distinct set of genes is not based on selective transcription of the plastid chromosome. Mol Gen Genet 263:1022–1030

    Article  CAS  PubMed  Google Scholar 

  • Larkin RM, Alonso JM, Ecker JR, Chory J (2003) GUN4, a regulator of chlorophyll synthesis and intracellular signaling. Science 299:902–906

    Article  CAS  PubMed  Google Scholar 

  • Lee H, Guo Y, Ohta M, Xiong LM, Stevenson B, Zhu JK (2002) LOS2, a genetic locus required for cold-responsive gene transcription encodes a bi-functional enolase. EMBO J 21:2692–2702

    Article  CAS  PubMed  Google Scholar 

  • Legen J, Kemp S, Krause K, Profanter B, Herrmann RG, Maier RM (2002) Comparative analysis of plastid transcription profiles of entire plastid chromosomes from tobacco attributed to wild-type and PEP-deficient transcription machineries. Plant J 31:171–188

    Article  CAS  PubMed  Google Scholar 

  • Leon P, Arroyo A, Mackenzie S (1998) Nuclear control of plastid and mitochondrial development in higher plants. Annu Rev Plant Physiol Plant Mol Biol 49:453–480

    Article  CAS  PubMed  Google Scholar 

  • Lichtenthaler HK, Wellburn AR (1983) Determination of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochem Soc Trans 11:591–592

    CAS  Google Scholar 

  • Liere K, Maliga P (1999) In vitro characterization of the tobacco rpoB promoter reveals a core sequence motif conserved between phage-type plastid and plant mitochondrial promoters. EMBO J 18:249–257

    Article  CAS  PubMed  Google Scholar 

  • Liu YG, Mitsukawa N, Oosumi T, Whittier RF (1995) Efficient isolation and mapping of Arabidopsis thaliana T-DNA insert junctions by thermal asymmetric interlaced PCR. Plant J 8:457–463

    Article  CAS  PubMed  Google Scholar 

  • Lurin C, Andrés C, Aubourg S, Bellaoui M, Bitton F, Bruyère C, Caboche M, Debast C, Gualberto J, Hoffmann B et al (2004) Genome-wide analysis of Arabidopsis pentatricopeptide repeat proteins reveals their essential role in organelle biogenesis. Plant Cell 16:2089–2103

    Article  CAS  PubMed  Google Scholar 

  • Maier RM, Zeltz P, Kössel H, Bonnard G, Gualberto JM, Grienenberger JM (1996) RNA editing in plant mitochondria and chloroplasts. Plant Mol Biol 32:343–365

    Article  CAS  PubMed  Google Scholar 

  • Meierhoff K, Felder S, Nakamura T, Bechtold N, Schuster G (2003) HCF152, an Arabidopsis RNA binding pentatricopeptide repeat protein involved in the processing of chloroplast psbB-psbT-psbH-petB-petD RNAs. Plant Cell 15:1480–1495

    Article  CAS  PubMed  Google Scholar 

  • Mochizuki N, Brusslan JA, Larkin R, Nagatani A, Chory J (2001) Arabidopsis genomes uncoupled 5 (GUN5) mutant reveals the involvement of Mg-chelatase H subunit in plastid-to-nucleus signal transduction. Proc Natl Acad Sci USA 98:2053–2058

    Article  CAS  PubMed  Google Scholar 

  • Mullet JE (1988) Chloroplast development and gene expression. Annu Rev Plant Physiol Plant Mol Biol 39:475–502

    Article  CAS  Google Scholar 

  • Nott A, Jung HS, Koussevitzky S, Chory J (2006) Plastid-to-nucleus retrograde signaling. Annu Rev Plant Biol 57:739–759

    Article  CAS  PubMed  Google Scholar 

  • O’Toole N, Hattori M, Andres C, Iida K, Lurin C, Schmitz-Linneweber C, Sugita M, Small I (2008) On the expansion of the pentatricopeptide repeat gene family in plants. Mol Biol Evol 25:1120–1128

    Article  PubMed  Google Scholar 

  • Okuda K, Myouga F, Motohashi R, Shinozaki K, Shikanai T (2007) Conserved domain structure of pentatricopeptide repeat proteins involved in chloroplast RNA editing. Proc Natl Acad Sci USA 104:8178–8183

    Article  CAS  PubMed  Google Scholar 

  • Okuda K, Habata Y, Kobayashi Y, Shikanai T (2008) Amino acid sequence variations in Nicotiana CRR4 orthologs determine the species-specific efficiency of RNA editing in plastids. Nucleic Acids Res 36:6155–6164

    Article  CAS  PubMed  Google Scholar 

  • Okuda K, Chateigner-Boutin AL, Nakamura T, Delannoy E, Sugita M, Myouga F, Motohashi R, Shinozaki K, Small I, Shikanai T (2009) Pentatricopeptide repeat proteins with the DYW motif have distinct molecular functions in RNA editing and RNA cleavage in Arabidopsis chloroplasts. Plant Cell 21:146–156

    Article  CAS  PubMed  Google Scholar 

  • Pfalz J, Liere K, Kandlbinder A, Dietz KJ, Oelmüller R (2006) pTAC2, -6, and -12 are components of the transcriptionally active plastid chromosome that are required for plastid gene expression. Plant Cell 18:176–197

    Article  CAS  PubMed  Google Scholar 

  • Pfalz J, Bayraktar OA, Prikryl J, Barkan A (2009) Site-specific binding of a PPR protein defines and stabilizes 5′ and 3′ mRNA termini in chloroplasts. EMBO J 28:2042–2052

    Article  CAS  PubMed  Google Scholar 

  • Pogson BJ, Woo NS, Förster B, Small ID (2008) Plastid signaling to the nucleus and beyond. Trends Plant Sci 13:602–609

    Article  CAS  PubMed  Google Scholar 

  • Robbins JC, Heller WP, Hanson MR (2009) A comparative genomics approach identifies a PPR-DYW protein that is essential for C-to-U editing of the Arabidopsis chloroplast accD transcript. RNA 15:1142–1153

    Article  CAS  PubMed  Google Scholar 

  • Rossel JB, Wilson PB, Hussain D, Woo NS, Gordon MJ, Mewett OP, Howell KA, Whelan J, Kazan K, Pogson BJ (2007) Systemic and intracellular response to photooxidative stress in Arabidopsis. Plant Cell 19:4091–4110

    Article  CAS  PubMed  Google Scholar 

  • Sakamoto H, Araki T, Meshi T, Iwabuchi M (2000) Expression of a subset of the Arabidopsis Cys(2)/His(2)-type zinc-finger protein gene family under water stress. Gene 248:23–32

    Article  CAS  PubMed  Google Scholar 

  • Sakamoto H, Maruyama K, Sakuma Y, Meshi T, Iwabuchi M, Shinozaki K, Yamaguchi-Shinozaki K (2004) Arabidopsis Cys2/His2-type zinc-finger proteins function as transcription repressors under drought, cold, and high-salinity stress conditions. Plant Physiol 136:2734–2746

    Article  CAS  PubMed  Google Scholar 

  • Salone V, Rüdinger M, Polsakiewicz M, Hoffmann B, Groth-Malonek M, Szurek B, Small I, Knoop V, Lurin C (2007) A hypothesis on the identification of the editing enzyme in plant organelles. FEBS Lett 581:4132–4138

    Article  CAS  PubMed  Google Scholar 

  • Sato S, Nakamura Y, Kaneko T, Asamizu E, Tabata S (1999) Complete structure of the chloroplast genome of Arabidopsis thaliana. DNA Res 6:283–290

    Article  CAS  PubMed  Google Scholar 

  • Schmitz-Linneweber C, Small I (2008) Pentatricopeptide repeat proteins: a socket set for organelle gene expression. Trends Plant Sci 13:663–670

    Article  CAS  PubMed  Google Scholar 

  • Schmitz-Linneweber C, Williams-Carrier R, Barkan A (2005) RNA immunoprecipitation and microarray analysis show a chloroplast pentatricopeptide repeat protein to be associated with the 5′ region of mRNAs whose translation it activates. Plant Cell 17:2791–2804

    Article  CAS  PubMed  Google Scholar 

  • Schmitz-Linneweber C, Williams-Carrier RE, Williams-Voelker PM, Kroeger TS, Vichas A, Barkan A (2006) A pentatricopeptide repeat protein facilitates the trans-splicing of the maize chloroplast rps12 pre-mRNA. Plant Cell 18:2650–2663

    Article  CAS  PubMed  Google Scholar 

  • Silhavy D, Maliga P (1998) Mapping of promoters for the nucleus-encoded plastid RNA polymerase (NEP) in the iojap maize mutant. Curr Genet 33:340–344

    Article  CAS  PubMed  Google Scholar 

  • Small ID, Peeters N (2000) The PPR motif—a TPR-related motif prevalent in plant organellar proteins. Trends Biochem Sci 25:46–47

    Article  CAS  PubMed  Google Scholar 

  • Sugita M, Sugiura M (1996) Regulation of gene expression in chloroplasts of higher plants. Plant Mol Biol 32:315–326

    Article  CAS  PubMed  Google Scholar 

  • Sugiura M, Hirose T, Sugita M (1998) Evolution and mechanism of translation in chloroplasts. Annu Rev Genet 32:437–459

    Article  CAS  PubMed  Google Scholar 

  • Susek RE, Ausubel FM, Chory J (1993) Signal transduction mutants of Arabidopsis uncouple nuclear CAB and RBCS gene expression from chloroplast development. Cell 74:787–799

    Article  CAS  PubMed  Google Scholar 

  • Swiatecka-Hagenbruch M, Liere K, Börner T (2007) High diversity of plastidial promoters in Arabidopsis thaliana. Mol Genet Genomics 277:725–734

    Article  CAS  PubMed  Google Scholar 

  • Swiatecka-Hagenbruch M, Emanuel C, Hedtke B, Liere K, Börner T (2008) Impaired function of the phage-type RNA polymerase RpoTp in transcription of chloroplast genes is compensated by a second phage-type RNA polymerase. Nucleic Acids Res 36:785–792

    Article  CAS  PubMed  Google Scholar 

  • Williams PM, Barkan A (2003) A chloroplast-localized PPR protein required for plastid ribosome accumulation. Plant J 36:675–686

    Article  CAS  PubMed  Google Scholar 

  • Woodson JD, Chory J (2008) Coordination of gene expression between organellar and nuclear genomes. Nat Rev Genet 9:383–395

    Article  CAS  PubMed  Google Scholar 

  • Yamazaki H, Tasaka M, Shikanai T (2004) PPR motifs of the nucleus-encoded factor, PGR3, function in the selective and distinct steps of chloroplast gene expression in Arabidopsis. Plant J 38:152–163

    Article  CAS  PubMed  Google Scholar 

  • Yu QB, Jiang Y, Chong K, Yang ZN (2009) AtECB2, a pentatricopeptide repeat protein, is required for chloroplast transcript accD RNA editing and early chloroplast biogenesis in Arabidopsis thaliana. Plant J 59:1011–1023

    Article  CAS  PubMed  Google Scholar 

  • Zhou W, Cheng Y, Yap A, Chateigner-Boutin AL, Delannoy E, Hammani K, Small I, Huang J (2009) The Arabidopsis gene YS1 encoding a DYW protein is required for editing of rpoB transcripts and the rapid development of chloroplasts during early growth. Plant J 58:82–96

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. J. Sheen for the GFP vector, T.Y. Chung for technical assistance and M.J. Fang for assistance in confocal microscopy. This work was supported by grants to M.-H. H. from National Science Council and Academia Sinica of Taiwan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming-Hsiun Hsieh.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOC 91 kb)

(PDF 273 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tseng, CC., Sung, TY., Li, YC. et al. Editing of accD and ndhF chloroplast transcripts is partially affected in the Arabidopsis vanilla cream1 mutant. Plant Mol Biol 73, 309–323 (2010). https://doi.org/10.1007/s11103-010-9616-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-010-9616-5

Keywords

Navigation