Skip to main content
Log in

The tomato brassinosteroid receptor BRI1 increases binding of systemin to tobacco plasma membranes, but is not involved in systemin signaling

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

The tomato wound signal systemin is perceived by a specific high-affinity, saturable, and reversible cell surface receptor. This receptor was identified as the receptor-like kinase SR160, which turned out to be identical to the brassinosteroid receptor BRI1. Recently, it has been shown that the tomato bri1 null mutant cu3 is as sensitive to systemin as wild type plants. Here we explored these contradictory findings by studying the responses of tobacco plants (Nicotiana tabacum) to systemin. A fluorescently-labeled systemin analog bound specifically to plasma membranes of tobacco suspension-cultured cells that expressed the tomato BRI1-FLAG transgene, but not to wild type tobacco cells. On the other hand, signaling responses to systemin, such as activation of mitogen-activated protein kinases and medium alkalinization, were neither increased in BRI1-FLAG-overexpressing tobacco cells nor decreased in BRI1-silenced cells as compared to levels in untransformed control cells. Furthermore, in transgenic tobacco plants BRI1-FLAG became phosphorylated on threonine residues in response to brassinolide application, but not in response to systemin. When BRI1 transcript levels were reduced by virus-induced gene silencing in tomato plants, the silenced plants displayed a phenotype characteristic of bri1 mutants. However, their response to overexpression of the Prosystemin transgene was the same as in control plants. Taken together, our data suggest that BRI1 can function as a systemin binding protein, but that binding of the ligand does not transduce the signal into the cell. This unusual behavior and the nature of the elusive systemin receptor will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alborn HT, Turlings TCJ, Jones TH, Stenhagen G, Loughrin JH, Tumlinson JH (1997) An elicitor of plant volatiles from beet armyworm oral secretion. Science 276:945–949

    Article  CAS  Google Scholar 

  • Albrecht C, Russinova E, Kemmerling B, Kwaaitaal M, de Vries SC (2008) Arabidopsis somatic embryogenesis receptor kinase proteins serve brassinosteroid-dependent and -independent signaling pathways. Plant Physiol 148:611–619

    Article  PubMed  CAS  Google Scholar 

  • Astle S, Khan RN, Thornton S (2003) The effects of a progesterone metabolite, 5[beta]-dihydroprogesterone, on oxytocin receptor binding in human myometrial membranes. BJOG 110:589–592

    PubMed  CAS  Google Scholar 

  • Burger K, Fahrenholz F, Gimpl G (1999) Non-genomic effects of progesterone on the signaling function of G protein-coupled receptors. FEBS Lett 464:25–29

    Article  PubMed  CAS  Google Scholar 

  • Cano-Delgado A, Yin Y, Yu C, Vafeados D, Mora-Garcia S, Cheng J-C, Nam KH, Li J, Chory J (2004) BRL1 and BRL3 are novel brassinosteroid receptors that function in vascular differentiation in Arabidopsis. Development 131:5341–5351

    Article  PubMed  CAS  Google Scholar 

  • Chen H, Wilkerson CG, Kuchar JA, Phinney BS, Howe GA (2005) Jasmonate-inducible plant enzymes degrade essential amino acids in the herbivore midgut. Proc Natl Acad Sci USA 102:19237–19242

    Article  PubMed  CAS  Google Scholar 

  • Chen H, Jones AD, Howe GA (2006) Constitutive activation of the jasmonate signaling pathway enhances the production of secondary metabolites in tomato. FEBS Lett 580:2540–2546

    Article  PubMed  CAS  Google Scholar 

  • Chinchilla D, Zipfel C, Robatzek S, Kemmerling B, Nurnberger T, Jones JDG, Felix G, Boller T (2007) A flagellin-induced complex of the receptor FLS2 and BAK1 initiates plant defence. Nature 448:497–500

    Article  PubMed  CAS  Google Scholar 

  • Chini A, Fonseca S, Fernandez G, Adie B, Chico JM, Lorenzo O, Garcia-Casado G, Lopez-Vidriero I, Lozano FM, Ponce MR, Micol JL, Solano R (2007) The JAZ family of repressors is the missing link in jasmonate signalling. Nature 448:666–671

    Article  PubMed  CAS  Google Scholar 

  • Constabel CP, Bergey DR, Ryan CA (1995) Systemin activates synthesis of wound-inducible tomato leaf polyphenol oxidase via the octadecanoid defense signaling pathway. Proc Natl Acad Sci USA 92:407–411

    Article  PubMed  CAS  Google Scholar 

  • Corrado G, Sasso R, Pasquariello M, Iodice L, Carretta A, Cascone P, Ariati L, Digilio M, Guerrieri E, Rao R (2007) Systemin regulates both systemic and volatile signaling in tomato plants. J Chem Ecol 33:669–681

    Article  PubMed  CAS  Google Scholar 

  • Felix G, Boller T (1995) Systemin induces rapid ion fluxes and ethylene biosynthesis in Lycopersicon peruvianum cells. Plant J 7:381–389

    Article  CAS  Google Scholar 

  • Felsenstien J (1989) PHYLIP–phylogeny inference package. Cladistics 5:164–166

    Google Scholar 

  • Gallie DR, Sleat DE, Watts JW, Turner PC, Wilson TMA (1987) The 5′-leader sequence of tobacco mosaic virus RNA enhances the expression of foreign gene transcripts in vitro and in vivo. Nucl Acids Res 15:3257–3273

    Article  PubMed  CAS  Google Scholar 

  • Grazzini E, Guillon G, Mouillac B, Zingg HH (1998) Inhibition of oxytocin receptor function by direct binding of progesterone. Nature 392:509–512

    Article  PubMed  CAS  Google Scholar 

  • Green TR, Ryan CA (1972) Wound-induced proteinase inhibitor in plant leaves: a possible defense mechanism against insects. Science 175:776–777

    Article  PubMed  CAS  Google Scholar 

  • Halitschke R, Gase K, Hui D, Schmidt DD, Baldwin IT (2003) Molecular interactions between the specialist herbivore Manduca Sexta (Lepidoptera, Sphingidae) and its natural host Nicotiana attenuata. VI. Microarray analysis reveals that most herbivore-specific transcriptional changes are mediated by fatty acid-amino acid conjugates. Plant Physiol 131:1894–1902

    Article  PubMed  CAS  Google Scholar 

  • Heese A, Hann DR, Gimenez-Ibanez S, Jones AME, He K, Li J, Schroeder JI, Peck SC, Rathjen JP (2007) The receptor-like kinase SERK3/BAK1 is a central regulator of innate immunity in plants. Proc Natl Acad Sci USA 104:12217–12222

    Article  PubMed  CAS  Google Scholar 

  • Higgins R, Lockwood T, Holley S, Yalamanchili R, Stratmann J (2007) Changes in extracellular pH are neither required nor sufficient for activation of mitogen-activated protein kinases (MAPKs) in response to systemin and fusicoccin in tomato. Planta 225:1535–1546

    Article  PubMed  CAS  Google Scholar 

  • Holley SR, Yalamanchili RD, Moura SD, Ryan CA, Stratmann JW (2003) Convergence of signaling pathways induced by systemin, oligosaccharide elicitors, and ultraviolet-B radiation at the level of mitogen-activated protein kinases in Lycopersicon peruvianum suspension-cultured cells. Plant Physiol 132:1728–1738

    Article  PubMed  CAS  Google Scholar 

  • Holton N, Cano-Delgado A, Harrison K, Montoya T, Chory J, Bishop GJ (2007) Tomato brassinosteroid insensitive1 is required for systemin-induced root elongation in solanum pimpinellifolium but is not essential for wound signaling. Plant Cell 19:1709–1717

    Article  PubMed  CAS  Google Scholar 

  • Howe GA (2004) Jasmonates as signals in the wound response. J Plant Growth Regul 23:223–237

    CAS  Google Scholar 

  • Kandoth PK, Ranf S, Pancholi SS, Jayanty S, Walla MD, Miller W, Howe GA, Lincoln DE, Stratmann JW (2007) Tomato MAPKs LeMPK1, LeMPK2, and LeMPK3 function in the systemin-mediated defense response against herbivorous insects. Proc Natl Acad Sci USA 104:12205–12210

    Article  PubMed  CAS  Google Scholar 

  • Kimura M (1983) The neutral theory of molecular evolution. Cambridge University Press, Cambridge

    Google Scholar 

  • Kinoshita T, Cano-Delgado A, Seto H, Hiranuma S, Fujioka S, Yoshida S, Chory J (2005) Binding of brassinosteroids to the extracellular domain of plant receptor kinase BRI1. Nature 433:167–171

    Article  PubMed  CAS  Google Scholar 

  • Lanfermeijer FC, Staal M, Malinowski R, Stratmann JW, Elzenga JTM (2008) Micro-electrode flux estimation confirms that the solanum pimpinellifolium cu3 mutant still responds to systemin. Plant Physiol 146:129–139

    Article  PubMed  CAS  Google Scholar 

  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) ClustalW and ClustalX version 2.0. Bioinformatics 23(21):2947–2948

    Article  PubMed  CAS  Google Scholar 

  • Li J, Wen JQ, Lease KA, Doke JT, Tax FE, Walker JC (2002) BAK1, an Arabidopsis LRR receptor-like protein kinase, interacts with BRI1 and modulates brassinosteroid signaling. Cell 110:213–222

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Schiff M, Dinesh-Kumar SP (2002) Virus-induced gene silencing in tomato. Plant J 31:777–786

    Article  PubMed  CAS  Google Scholar 

  • Malone M (1996) Rapid, long-distance signal transmission in higher plants. In: Callow JA (ed) Advances in botanical research. Academic Press, San Diego, pp 163–228

    Google Scholar 

  • Marti E, Gisbert C, Bishop GJ, Dixon MS, Garcia-Martinez JL (2006) Genetic and physiological characterization of tomato cv. Micro-Tom. J Exp Bot 57:2037–2047

    Article  PubMed  CAS  Google Scholar 

  • Mattiacci L, Dicke M, Posthumus MA (1995) β-glucosidase: an elicitor of herbivore-induced plant odor that attracts host-searching parasitic wasps. Proc Natl Acad Sci USA 92:2036–2040

    Article  PubMed  CAS  Google Scholar 

  • McGurl B, Orozco-Cardenas ML, Pearce G, Ryan CA (1994) Overexpression of the prosystemin gene in transgenic tomato plants generates a systemic signal that constitutively induces proteinase inhibitor synthesis. Proc Natl Acad Sci USA 91:9799–9802

    Article  PubMed  CAS  Google Scholar 

  • Meindl T, Boller T, Felix G (1998) The plant wound hormone systemin binds with the N-terminal part to its receptor but needs the C-terminal part to activate it. Plant Cell 10:1561–1570

    Article  PubMed  CAS  Google Scholar 

  • Montoya T, Nomura T, Farrar K, Kaneta T, Yokota T, Bishop GJ (2002) Cloning the tomato curl3 gene highlights the putative dual role of the leucine-rich repeat receptor kinase tBRI1/SR160 in plant steroid hormone and peptide hormone signaling. Plant Cell 14:3163–3176

    Article  PubMed  CAS  Google Scholar 

  • Moyen C, Hammond-Kosack KE, Jones J, Knight MR, Johannes E (1998) Systemin triggers an increase of cytoplasmic calcium in tomato mesophyll cells: Ca2+ mobilization from intra- and extracellular compartments. Plant Cell Environ 21:1101–1111

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Oh M-H, Ray WK, Huber SC, Asara JM, Gage DA, Clouse SD (2000) Recombinant brassinosteroid insensitive 1 receptor-like kinase autophosphorylates on serine and threonine residues and phosphorylates a conserved peptide motif in vitro. Plant Physiol 124:751–766

    Article  PubMed  CAS  Google Scholar 

  • Pearce G, Ryan CA (2003) Systemic signaling in tomato plants for defense against herbivores. Isolation and characterization of three novel defense-signaling glycopeptide hormones coded in a single precursor gene. J Biol Chem 278:30044–30050

    Article  PubMed  CAS  Google Scholar 

  • Pearce G, Strydom D, Johnson S, Ryan CA (1991) A polypeptide from tomato leaves induced wound-inducible proteinase inhibitor proteins. Science 253:895–898

    Article  PubMed  CAS  Google Scholar 

  • Pearce G, Johnson S, Ryan CA (1993) Structure-activity of deleted and substituted systemin, an 18-amino acid polypetide inducer of plant defensive genes. J Biol Chem 268:212–216

    PubMed  CAS  Google Scholar 

  • Pearce G, Moura D, Stratmann J, Ryan CA (2001) Production of multiple plant hormones from a single polyprotein precursor. Nature 411:817–820

    Article  PubMed  CAS  Google Scholar 

  • Ren D, Yang KY, Li GJ, Liu Y, Zhang S (2006) Activation of Ntf4, a tobacco mitogen-activated protein kinase, during plant defense response and its involvement in hypersensitive response-like cell death. Plant Physiol 141:1482–1493

    Article  PubMed  CAS  Google Scholar 

  • Rice P, Longden I, Bleasby A (2000) EMBOSS: the European molecular biology open software suite. Trends Genet 16:276–277

    Article  PubMed  CAS  Google Scholar 

  • Rocco M, Corrado G, Arena S, D’Ambrosio C, Tortiglione C, Sellaroli S, Marra M, Rao R, Scaloni A (2008) The expression of tomato prosystemin gene in tobacco plants highly affects host proteomic repertoire. J Proteomics 71:176–185

    Article  PubMed  CAS  Google Scholar 

  • Rogers SG, Horsch RB, Fraley RT (1986) Gene transfer in plants: production of transformed plants using Ti plasmid vectors. In: Weissbach H, Weissbach A (eds) Methods in enzymology. Academic Press, New York, pp 627–640

    Google Scholar 

  • Rossberg M, Theres K, Acarkan A, Herrero R, Schmitt T, Schumacher K, Schmitz G, Schmidt R (2001) Comparative sequence analysis reveals extensive microcolinearity in the lateral suppressor regions of the tomato, arabidopsis, and capsella genomes. Plant Cell 13:979–988

    Article  PubMed  CAS  Google Scholar 

  • Ryan CA (1967) Quantitative determination of soluble cellular proteins by radial diffusion in agar gels containing antibodies. Anal Biochem 19:434–440

    Article  PubMed  CAS  Google Scholar 

  • Ryan CA, Pearce G (2003) Systemins: a functionally defined family of peptide signals that regulate defensive genes in Solanaceae species. Proc Natl Acad Sci U S A 100(Suppl 2):14577–14580

    Article  PubMed  CAS  Google Scholar 

  • Ryan CA, Pearce G, Scheer J, Moura DS (2002) Polypeptide hormones. Plant Cell 14:S251–S264

    PubMed  CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  • Schaller A, Ryan CA (1994) Identification of a 50-kDa systemin-binding protein in tomato plasma membranes having kex-2p-like properties. Proc Natl Acad Sci USA 91:11802–11806

    Article  PubMed  CAS  Google Scholar 

  • Scheer J, Ryan CA (1999) A 160-kD systemin receptor on the surface of Lycopersicon peruvianum suspension-cultured cells. Plant Cell 11:1525–1535

    Article  PubMed  CAS  Google Scholar 

  • Scheer J, Ryan CA (2002) The systemin receptor SR160 from Lycopersicon peruvianum is a member of the LRR receptor kinase family. Proc Natl Acad Sci USA 99:9585–9590

    Article  PubMed  CAS  Google Scholar 

  • Scheer J, Pearce G, Ryan CA (2003) Generation of systemin signaling in tobacco by transformation with the tomato systemin receptor kinase gene. Proc Nat Acad Sci USA 100:10114–10117

    Article  PubMed  CAS  Google Scholar 

  • Schmelz EA, Carroll MJ, LeClere S, Phipps SM, Meredith J, Chourey PS, Alborn HT, Teal PEA (2006) Fragments of ATP synthase mediate plant perception of insect attack. Proc Natl Acad Sci USA 103:8894–8899

    Article  PubMed  CAS  Google Scholar 

  • Schmidt S, Baldwin IT (2006) Systemin in Solanum nigrum. The tomato-homologous polypeptide does not mediate direct defense responses. Plant Physiol 142:1751–1758

    Article  PubMed  CAS  Google Scholar 

  • Smith RH (1986) Establishment of calli and suspension cultures. Methods Enzymol 118:539–549

    Article  CAS  Google Scholar 

  • Stratmann JW (2003) Long distance run in the wound response—jasmonic acid is pulling ahead. Trends Plant Sci 8:247–250

    Article  PubMed  CAS  Google Scholar 

  • Stratmann JW, Ryan CA (1997) Myelin basic protein kinase activity in tomato leaves is induced systemically by wounding and increases in response to systemin and oligosaccharide elicitors. Proc Natl Acad Sci USA 94:11085–11089

    Article  PubMed  CAS  Google Scholar 

  • Stratmann J, Scheer J, Ryan CA (2000) Suramin inhibits initiation of defense signaling by systemin, chitosan and pmg-elicitor in suspension cultured Lycopersicon peruvianum cells. Proc Natl Acad Sci USA 97:8862–8867

    Article  PubMed  CAS  Google Scholar 

  • Thines B, Katsir L, Melotto M, Niu Y, Mandaokar A, Liu G, Nomura K, He SY, Howe GA, Browse J (2007) JAZ repressor proteins are targets of the SCFCOI1 complex during jasmonate signalling. Nature 448:661–665

    Article  PubMed  CAS  Google Scholar 

  • Trautman R, Cowan KM, Wagner GG (1971) Data for processing for radial immunodiffusion. Immunochemistry 8:901–916

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Goshe MB, Soderblom EJ, Phinney BS, Kuchar JA, Li J, Asami T, Yoshida S, Huber SC, Clouse SD (2005) Identification and functional analysis of in vivo phosphorylation sites of the arabidopsis brassinosteroid-insensitive1 receptor kinase. Plant Cell 17:1685–1703

    Article  PubMed  CAS  Google Scholar 

  • Wasternack C, Stenzel I, Hause B, Hause G, Kutter C, Maucher H, Neumerkel J, Feussner I, Miersch O (2006) The wound response in tomato—role of jasmonic acid. J Plant Physiol 163:297–306

    Article  PubMed  CAS  Google Scholar 

  • Yalamanchili RD, Stratmann J (2002) Ultraviolet-B activates components of the systemin signaling pathway in Lycopersicon peruvianum suspension-cultured cells. J Biol Chem 277:28424–28430

    Article  PubMed  CAS  Google Scholar 

  • Zhang S, Klessig DF (1997) Salicylic acid activates a 48-kD MAP kinase in tobacco. Plant Cell 9:809–824

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Frank Lanfermeijer and the late Clarence A. Ryan for stimulating discussions, and Sarah Refi and Rebecca Higgins for critically reading the manuscript. This work was supported by a grant from the National Science Foundation (NSF) (MCB-0418890) to J.W.S., and by a grant from the Unites States Department of Agriculture (USDA) competitive grants program (NRI 2004-35304-14930) to S.D.C.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes W. Stratmann.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 26,773 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Malinowski, R., Higgins, R., Luo, Y. et al. The tomato brassinosteroid receptor BRI1 increases binding of systemin to tobacco plasma membranes, but is not involved in systemin signaling. Plant Mol Biol 70, 603–616 (2009). https://doi.org/10.1007/s11103-009-9494-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-009-9494-x

Keywords

Navigation