Skip to main content
Log in

Systemin Regulates Both Systemic and Volatile Signaling in Tomato Plants

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

The prevailing reaction of plants to pest attack is the activation of various defense mechanisms. In tomato, several studies indicate that an 18 amino acid (aa) peptide, called systemin, is a primary signal for the systemic induction of direct resistance against plant-chewing pests, and that the transgenic expression of the prosystemin gene (encoding the 200 aa systemin precursor) activates genes involved in the plant response to herbivores. By using a combination of behavioral, chemical, and gene expression analyses, we report that systemin enhances the production of bioactive volatile compounds, increases plant attractivity towards parasitiod wasps, and activates genes involved in volatile production. Our data imply that systemin is involved in the systemic activation of indirect defense in tomato, and we conclude that a single gene controls the systemic activation of coordinated and associated responses against pests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alborn, T., Turlings, T. C. J., Jones, T. H., Stenhagen, G., Loughrin, J. H., and Tumlinson, J. H. 1997. An elicitor of plant volatiles from beet armyworm oral secretion. Science 276:945–949.

    Article  CAS  Google Scholar 

  • Alfano, G., Vitiello, C., Caccioppoli, C., Caramico, T., Carola, A., Szego, M. J., McInnes, R. R., Auricchio, A., and Banfi, S. 2005. Natural antisense transcripts associated with genes involved in eye development. Hum. Mol. Genet. 14:913–923.

    Article  PubMed  CAS  Google Scholar 

  • Ament, K., Kant, M. R., Sabelis, M. W., Haring, M. A., and Schuurink, R. C. 2004. Jasmonic acid is a key regulator of spider mite-induced volatile terpenoid and methyl salicylate emission in tomato. Plant Physiol. 135:2025–2037.

    Article  PubMed  CAS  Google Scholar 

  • Bergey, D. R., Hoi, G. A., and Ryan, C. A. 1996. Polypeptide signaling for plant defensive genes exhibits analogies to defense signaling in animals. Proc. Natl. Acad. Sci. USA 93:12053–12058.

    Article  PubMed  CAS  Google Scholar 

  • Birkett, M. A., Campbell, C. A. M., Chamberlain, K., Guerrieri, E., Hick, A. J., Martin, J. L., Matthes, M., Napier, J. A., Pettersson, J., Pickett, J. A., et al. 2000. New roles for cis-jasmone as an insect semiochemical and in plant defense. Proc. Natl. Acad. Sci. USA 97:9329–9334.

    Article  PubMed  CAS  Google Scholar 

  • Chen, G. P., Hackett, R., Walker, D., Taylor, A., Lin, Z. F., and Grierson, D. 2004. Identification of a specific isoform of tomato lipoxygenase (TomloxC) involved in the generation of fatty acid-derived flavor compounds. Plant Physiol. 136:2641–2651.

    Article  PubMed  CAS  Google Scholar 

  • Colby, S. M., Crock, J., Dowdle-Rizzo, B., Lemaux, P. G., and Croteau, R. 1998. Germacrene C synthase from Lycopersicon esculentum cv. VFNT Cherry tomato: cDNA isolation, characterization, and bacterial expression of the multiple product sesquiterpene cyclase. Proc. Natl. Acad. Sci. USA 95:2216–2221.

    Article  PubMed  CAS  Google Scholar 

  • Cooper, W. R. and Goggin, F. L. 2005. Effects of jasmonate-induced defenses in tomato on the potato aphid, Macrosiphum euphorbiae. Entomol. Exp. Appl. 115:107–115.

    Article  CAS  Google Scholar 

  • Corrado, G., Bovi, P. D., Ciliento, R., Gaudio, L., Di Maro, A., Aceto, S., Lorito, M., and Rao, R. 2005. Inducible expression of a Phytolacca heterotepala ribosome-inactivating protein leads to enhanced resistance against major fungal pathogens in tobacco. Phytopathology 95:206–215.

    CAS  Google Scholar 

  • Degenhardt, J., Gershenzon, J., Baldwin, I. T., and Kessler, A. 2003. Attracting friends to feast on foes: engineering terpene emission to make crop plants more attractive to herbivore enemies. Curr. Opin. Biotechnol. 14:169–176.

    Article  PubMed  CAS  Google Scholar 

  • Griffiths, A., Barry, C., Alpuche-Solis, A. G., and Grierson, D. 1999. Ethylene and developmental signals regulate expression of lipoxygenase genes during tomato fruit ripening. J. Exp. Bot. 50:793–798.

    Article  CAS  Google Scholar 

  • Guerrieri, E., Poppy, G. M., Powell, W., Rao, R., and Pennacchio, F. 2002. Plant-to-plant communication mediating in-flight orientation of Aphidius ervi. J. Chem. Ecol. 28:1703–1715.

    Article  PubMed  CAS  Google Scholar 

  • Heil, M. 2002. Ecological costs of induced resistance. Curr. Opin. Plant Biol. 5:345–350.

    Article  PubMed  Google Scholar 

  • Heil, M. and Baldwin, I. T. 2002. Fitness costs of induced resistance: emerging experimental support for a slippery concept. Trends Plant Sci. 7:61–67.

    Article  PubMed  CAS  Google Scholar 

  • Heitz, T., Bergey, D. R., and Ryan, C. A. 1997. A gene encoding a chloroplast-targeted lipoxygenase in tomato leaves is transiently induced by wounding, systemin, and methyl jasmonate. Plant Physiol. 114:1085–1093.

    Article  PubMed  CAS  Google Scholar 

  • Holopainen, J. K. 2004. Multiple functions of inducible plant volatiles. Trends Plant Sci. 9:529–533.

    Article  PubMed  CAS  Google Scholar 

  • Howe, G. A. 2004. Jasmonates as signals in the wound response. J. Plant Growth Regen. 23:223–237.

    Article  CAS  Google Scholar 

  • Kant, M. R., Ament, K., Sabelis, M. W., Haring, M. A., and Schuurink, R. C. 2004. Differential timing of spider mite-induced direct and indirect defenses in tomato plants. Plant Physiol. 135:483–495.

    Article  PubMed  CAS  Google Scholar 

  • Kessler, A. and Baldwin, I. T. 2002. Plant responses to insect herbivory: the emerging molecular analysis. Annu. Rev. Plant Biol. 53:299–328.

    Article  PubMed  CAS  Google Scholar 

  • Kessler, A., Halitschke, R., and Baldwin, I. T. 2004. Silencing the jasmonate cascade: induced plant defenses and insect populations. Science 305:665–668.

    Article  PubMed  CAS  Google Scholar 

  • Livak, K. J. and Schmittgen, T. D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(T)(-ΔΔCt) method. Methods 25:402–408.

    Article  PubMed  CAS  Google Scholar 

  • Maffei, M., Bossi, S., Spiteller, D., Mithofer, A., and Boland, W. 2004. Effects of feeding Spodoptera littoralis on lima bean leaves. I. Membrane potentials, intracellular calcium variations, oral secretions, and regurgitate components. Plant Physiol. 134:1752–1762.

    Article  PubMed  CAS  Google Scholar 

  • Matsui, K., Fukutomi, S., Wilkinson, J., Hiatt, B., Knauff, V., and Kajwara, T. 2001. Effect of overexpression of fatty acid 9-hydroperoxide lyase in tomatoes (Lycopersicon esculentum Mill.). J. Agric. Food Chem. 49:5418–5424.

    Article  PubMed  CAS  Google Scholar 

  • McGurl, B. and Ryan, C. A. 1992. The organization of the prosystemin gene. Plant Mol. Biol. 20:405–409.

    Article  PubMed  CAS  Google Scholar 

  • McGurl, B., Orozcocardenas, M., Pearce, G., and Ryan, C. A. 1994. Overexpression of the prosystemin gene in transgenic tomato plants generates a systemic signal that constitutively induces proteinase-inhibitor synthesis. Proc. Natl. Acad. Sci. USA 91:9799–9802.

    Article  PubMed  CAS  Google Scholar 

  • Mithofer, A., Wanner, G., and Boland, W. 2005. Effects of feeding Spodoptera littoralis on lima bean leaves. II. Continuous mechanical wounding resembling insect feeding is sufficient to elicit herbivory-related volatile emission. Plant Physiol. 137:1160–1168.

    Article  PubMed  Google Scholar 

  • Paré, P. W. and Tumlinson, J. H. 1997. De novo biosynthesis of volatiles induced by insect herbivory in cotton plants. Plant Physiol. 114:1161–1167.

    PubMed  Google Scholar 

  • Paré, P. W. and Tumlinson, J. H. 1998. Cotton volatiles synthesized and released distal to the site of insect damage. Phytochemistry 47:521–526.

    Article  Google Scholar 

  • Rasmann, S., Kollner, T. G., Degenhardt, J., Hiltpold, I., Toepfer, S., Kuhlmann, U., Gershenzon, J., and Turlings, T. C. J. 2005. Recruitment of entomopathogenic nematodes by insect-damaged maize roots. Nature 434:732–737.

    Article  PubMed  CAS  Google Scholar 

  • Rohlf, F. J. and Sokal, R. R. 1995. Statistical Tables. Freeman, New York, NY.

    Google Scholar 

  • Ryan, C. A. and Pearce, G. 2003. Systemins: a functionally defined family of peptide signal that regulate defensive genes in Solanaceae species. Proc. Natl. Acad. Sci. USA 100:14577–14580.

    Article  PubMed  CAS  Google Scholar 

  • Sanchez-Hernadez, C., Lopez, M. G., and Delano, J. P. 2006. Reduced levels of volatile emission in jasmonate-deficient spr2 tomato mutants favour ovideposition by insect herbivores. Plant Cell Env. 29:546–557.

    Article  Google Scholar 

  • Scheer, J. M. and Ryan, C. A. 2002. The systemin receptor SR160 from Lycopersicon peruvianum is a member of the LRR receptor kinase family. Proc. Natl. Acad. Sci. USA 99:9585–9590.

    Article  PubMed  CAS  Google Scholar 

  • Schilmiller, A. L. and Howe, G. A. 2005. Systemic signaling in the wound response. Curr. Opin. Plant Biol. 8:369–377.

    Article  PubMed  CAS  Google Scholar 

  • Shewmaker, C. K., Ridge, N. P., Pokalsky, A. R., Rose, R. E., and Hiatt, W. R. 1990. Nucleotide-sequence of an Ef-1-Alpha genomic clone from tomato. Nucleic Acid Res. 18:4276.

    Article  PubMed  CAS  Google Scholar 

  • Sokal, R. R. and Rohlf, F. J. K. 1995. Biometry. W.H. Freeman, New York, NY.

    Google Scholar 

  • Stout, M. J., Thaler, J. S., and Thomma, B. 2006. Plant-mediated interactions between pathogenic microorganisms and herbivorous arthropods. Annu. Rev. Entomol. 51:663–689.

    Article  PubMed  CAS  Google Scholar 

  • Thaler, J. S. 1999. Jasmonate-inducible plant defences cause increased parasitism of herbivores. Nature 399:686–688.

    Article  CAS  Google Scholar 

  • van Blokland, R., Ross, S., Corrado, G., Scollan, C., and Meyer, P. 1998. Developmental abnormalities associated with deoxyadenosine methylation in transgenic tobacco. Plant J. 15:543–551.

    Article  PubMed  Google Scholar 

  • Vancanneyt, G., Sanz, C., Farmaki, T., Paneque, M., Ortego, F., Castanera, P., and Sanchez-Serrano, J. J. 2001. Hydroperoxide lyase depletion in transgenic potato plants leads to an increase in aphid performance. Proc. Natl. Acad. Sci. USA 98:8139–8144.

    Article  PubMed  CAS  Google Scholar 

  • Walling, L. L. 2000. The myriad plant responses to herbivores. J. Plant Growth Regen. 19:195–216.

    CAS  Google Scholar 

Download references

Acknowledgments

We thank Clarence Ryan (Institute of Biological Chemistry, Washington State University) for providing the seeds and useful suggestions during manuscript preparation and Adele Cataldo for technical support. This work was supported by Ministero dell’Università e Ricerca Scientifica (PRIN 2004, MIUR Progetto n. 32 Regioni Obiettivo 1).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E. Guerrieri or R. Rao.

Additional information

G. Corrado and R. Sasso contributed equally to the work

Appendix

Appendix

Standards Used for the Identification of Volatiles Collected by Air-entrainment of Head Space from BB and BBS Plants in Alphabetical Order

(+) longifolene, (Z)-3-hexen-1-ol, 3-carene, 6-methyl-5-hepten-2-one, anisole-p-allyl, camphor, chlorobenzene, cis-nerolidol, decane, dodecene, eucalyptol, eugenol, hexanal, humulene (=α-caryophyllene), linalool, methyl salicilate, menthol, ocimene, p-cymene, p-dichlorobenzene (IS), phellandrene, R(+) limonene, S(−) limonene, skatol, terpinolene, trans-caryophyllene, trans-nerolidol, trans-β-farnesene, α-copaene, α-cubebene, α-gurjunene, α-pinene, α-terpinene, α-terpineol, β-myrcene, γ-terpinene

Rights and permissions

Reprints and permissions

About this article

Cite this article

Corrado, G., Sasso, R., Pasquariello, M. et al. Systemin Regulates Both Systemic and Volatile Signaling in Tomato Plants. J Chem Ecol 33, 669–681 (2007). https://doi.org/10.1007/s10886-007-9254-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-007-9254-9

Keywords

Navigation