Skip to main content
Log in

Suppression of tomato SlGGP aggravates methyl viologen-mediated oxidative stress

  • Original Paper
  • Published:
Biologia Plantarum

Abstract

Ascorbate (AsA) is an important antioxidant that can scavenge reactive oxygen species to protect plant cells against oxidative stress. Guanosine 5'-diphosphate (GDP)-L-galactose phosphorylase (GGP) is a key enzyme in the AsA biosynthetic pathway. To investigate the functions of GGP in AsA synthesis and oxidative stress tolerance in tomato, antisense lines with a reduced expression of SlGGP were obtained. Photobleaching after treatment of leaf disks with methyl viologen was more severe in transgenic lines compared to wild type (WT) plants. Moreover, compared with the WT plants, the transgenic plants showed a higher content of hydrogen peroxide, superoxide anion, malondialdehyde, as well as ion leakage, but a lower content of AsA and chlorophylls, ascorbate peroxidase activity, net photosynthetic rate, and maximal photochemical efficiency of photosystem II. Results of real-time quantitative polymerase chain reaction show that suppression of the SlGGP gene in the transgenic plants reduced their oxidative stress tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

APX:

ascorbate peroxidase

AsA:

ascorbate

CAT:

catalase

DHA:

dehydroascorbate

D-Man/L-Gal:

D-mannose/L-galactose

Fv/Fm :

variable to maximum chlorophyll fluorescence ratio (maximal photochemical efficiency of photosystem II)

GDP:

guanosine 5'-diphosphate

GGP:

GDP-L-galactose phosphorylase

MDA:

malondialdehyde

MV:

methyl viologen

O2 •− :

superoxide anion radical

PFD:

photon flux density

PN :

net photosynthetic rate

PS II:

photosystem II

REC:

relative electric conductance

ROS:

reactive oxygen species

SlGalLDH :

L-galactono-1,4-lactone dehydrogenase

SOD:

superoxide dismutase

WT:

wild type

References

  • Agius, F., Gonzalez-Lamothe, R., Caballero, J.L., Munoz-Blanco, J., Botella, M.A., Valpuesta, V.: Engineering increased vitamin C levels in plants by overexpression of a D-galacturonic acid reductase. — Nat. Biotechnol. 21: 177–181, 2003.

    Article  CAS  PubMed  Google Scholar 

  • Bulley, S.M., Rassam, M., Hoser, D., Otto, W., Schüneman, N., Wright, M., MacRae, E., Gleave, A., Laing, W.: Gene expression studies in kiwifruit and gene over-expression in Arabidopsis indicates that GDP L-galactose guanyltransferase is a major control point of vitamin C biosynthesis. — J. exp. Bot. 60: 765–778, 2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conklin, P., Williams, E., Last, R.: Environmental stress sensitivity of an ascorbic acid-deficient Arabidopsis mutant. — Proc. natl. Acad. Sci. USA 93: 9970–9974, 1996.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cornic, G., Bukhov, N.G., Wiese, C., Bligny, R., Heber, U.: Flexible coupling between light-dependent electron and vectorial proton transport in illuminated leaves of C3 plants; role of photosystem I dependent proton pumping. — Planta 210: 468–477, 2000.

    Article  CAS  PubMed  Google Scholar 

  • Davey, M., Montagu, M., Inze, D., Sanmartin, M., Kanellis, A., Smirnoff, N., Benzie, I., Strain, J., Favell, D., Fletcher, J.: Plant L-ascorbic acid: chemistry, function, metabolism, bioavailability and effects of processing. — J. Sci. Food Agr. 80: 825–860, 2000.

    Article  CAS  Google Scholar 

  • Gechev, T.S., Van, Breusegem, F., Stone, J.M., Denev, I., Laloi, C.: Reactive oxygen species as signals that modulate plant stress responses and programmed cell death. — Bioassays 28: 1091–1101, 2006.

    Article  CAS  Google Scholar 

  • Gilbert, L., Alhagdow, M., Nunes-Nesi, A., Quemener, B., Guillon, F., Bouchet, B., Faurobert, M., Gouble, B., Page, D., Garcia, V.: The GDP-D-mannose 3,5-epimerase (GME) plays a key role at the intersection of ascorbate and noncellulosic cell wall biosynthesis in tomato. — Plant J. 60: 499–508, 2009.

    Article  CAS  PubMed  Google Scholar 

  • Hancock, R.D., Viola, R.: Biosynthesis and catabolism of Lascorbic acid in plants. — Crit. Rev. Plant Sci. 24: 167–188, 2005.

    Article  CAS  Google Scholar 

  • Holuigue, L., Salinas, P., Blanco, F., Garreton, V.: Salicylic acid and reactive oxygen species in the activation of stress defense genes. - In: Hayat, S., Ahmad, A. (ed.): Salicylic Acid - a Plant Hormone. Pp. 197–246. Springer, Dordrecht 2007.

    Chapter  Google Scholar 

  • Huang, C.H., He, W.L., Guo, J.K., Chang, X.X., Su, P.X., Zhang, L.X.: Increased sensitivity to salt stress in an ascorbate-deficient Arabidopsis mutant. — J. exp. Bot. 56: 3041–3049, 2005.

    Article  CAS  PubMed  Google Scholar 

  • Ishikawa, T., Shigeoka, S.: Recent advances in ascorbate biosynthesis and the physiological significance of ascorbate peroxidase in photosynthesizing organisms. — Biosci. Biotechnol. Biochem. 72: 1143–1154, 2008.

    Article  CAS  PubMed  Google Scholar 

  • Kwon, S.Y., Jeong, Y.J., Lee, H.S., Kim, J.S., Cho, K.Y., Allen, R.D., Kwark, S.S.: Enhanced tolerance of transgenic tobacco plants expressing both superoxide dismutase and ascorbate peroxidase in chloroplasts against methyl viologen-mediated oxidative stress. — Plant Cell Environ. 25: 873–882, 2002.

    Article  Google Scholar 

  • Laing, W.A., Wright, M.A., Cooney, J., Bulley, S.M.: The missing step of the L-galactose pathway of ascorbate biosynthesis in plants, an L -galactose guanyltransferase, increases leaf ascorbate content. — Proc. nat. Acad. Sci. USA 104: 9534–9539, 2007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, F., Wu, Q.Y., Sun, Y.L., Wang, L.Y., Yang, X.H., Meng, Q.W.: Overexpression of chloroplastic monodehydroascorbate reductase enhanced tolerance to temperature and methylviologen-mediated oxidative stresses. — Physiol. Plant. 139: 421–434, 2010.

    CAS  PubMed  Google Scholar 

  • Li, X.G.., Meng, Q.W., Jiang, G..Q., Zou, Q.: The susceptibility of cucumber and sweet pepper to chilling under low irradiance is related to energy dissipation and water-water cycle. — Photosynthetica 41: 259–265, 2003.

    Article  CAS  Google Scholar 

  • Linster, C.L., Gomez, T.A., Christensen, K.C., Adler, L.N., Young, B.D., Brenner, C., Clarke, S.G.: Arabidopsis VTC2 encodes a GDP-L-galactose phosphorylase, the last unknown enzyme in the Smirnoff-Wheeler pathway to ascorbic acid in plants. — J. biol. Chem. 282: 18879–18885, 2007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loewus, M.W., Bedgar, D.L., Saito, K., Loewus, F.L.: Conversion of L-sorbonone to L-ascorbic acid by a NADPdependent dehydrogenase in bean and spinach leaf. — Plant Physiol. 94: 1492–1495, 1990.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lorence, A., Chevone, B.I., Mendes, P., Nessler, C.L.: Myoinositol oxygenase offers a possible entry point into plant ascorbate biosynthesis. — Plant Physiol. 134: 1200–1205, 2004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mellidou, I., Chagne, D., Laing, W.A., Keulemans, J., Davey, M.W.: Allelic variation in paralogs of GDP-L-galactose phosphorylase is a major determinant of vitamin C concentrations in apple fruit. — Plant Physiol. 160: 1613–1629, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller, G., Suzuki, N., Rizhsky, L., Hegie, A., Koussevitzky, S., Mittler, R.: Double mutants deficient in cytosolic and thylakoid ascorbate peroxidase reveal a complex mode of interaction between reactive oxygen species, plant development, and response to abiotic stresses. — Plant Physiol. 144: 1777–1785, 2007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Munné-Bosch, S., Alegre, L.: Interplay between ascorbic acid and lipophilic antioxidant defences in chloroplasts of waterstressed Arabidopsis plants. — FEBS Lett. 524: 145–148, 2002.

    Article  PubMed  Google Scholar 

  • Murik, O., Elboher, A., Kaplan, A.: Dehydroascorbate: a possible surveillance molecule of oxidative stress and programmed cell death in the green alga Chlamydomonas reinhardtii. — New Phytol. 202: 471–484, 2014.

    Article  CAS  PubMed  Google Scholar 

  • Noctor, G.: Metabolic signalling in defence and stress: the central roles of soluble redox couples. — Plant Cell Environ. 29: 409–425, 2006.

    Article  CAS  PubMed  Google Scholar 

  • Sasaki-Sekimoto, Y., Taki, N., Obayashi, T., Aono, M., Matsumoto, F., Sakurai, N., Ohta, H.: Coordinated activation of metabolic pathways for antioxidants and defence compounds by jasmonates and their roles in stress tolerance in Arabidopsis. — Plant J. 44: 653–668, 2005.

    Article  CAS  PubMed  Google Scholar 

  • Smirnoff, N., Conklin, P.L., Loewus, F.A.: Biosynthesis of ascorbic acid in plants: a renaissance. — Annu. Rev. Plant Physiol. Plant mol. Biol. 52: 437–467, 2001.

    Article  CAS  PubMed  Google Scholar 

  • Smirnoff, N.: Ascorbate biosynthesis and function in photoprotection. — Phil.. Trans. roy. Soc. London B. Biol. Sci. 355: 1455–1464, 2000.

    Article  CAS  Google Scholar 

  • Van Kooten, O., Snel, J.F.H.: The use of chlorophyll fluorescence nomenclature in plant stress physiology. — Photosynth. Res. 25: 147–150, 1990.

    Article  PubMed  Google Scholar 

  • Wang, L.Y., Li, D., Deng, Y.S., Lv, W., Meng, Q.W.: Antisense-mediated depletion of tomato GDP-L-galactose phosphorylase increases susceptibility to chilling stress. — J. Plant Physiol. 170: 303–314, 2013.

    Article  CAS  PubMed  Google Scholar 

  • Wheeler, G., Jones, M., Smirnoff, N.: The biosynthetic pathway of vitamin C in higher plants. — Nature 393: 365–369, 1998.

    Article  CAS  PubMed  Google Scholar 

  • Wolucka, B.A., Goossens, A., Inze, D.: Methyl jasmonate stimulates the de novo biosynthesis of vitamin C in plant cell suspensions. — J. exp. Bot. 56: 2527–2538, 2005.

    Article  CAS  PubMed  Google Scholar 

  • Yoshimura, K., Miyao, K., Gaber, A., Takeda, T., Kanaboshi, H., Miyasaka, H., Shigeoka, S.: Enhancement of stress tolerance in transgenic tobacco plants overexpressing Chlamydomonas glutathione peroxidase in chloroplasts or cytosol. — Plant J. 37: 21–33, 2004.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, C., Ouyang, B., Yang, C., Zhang, X., Liu, H., Zhang, Y., Zhang, J., Li, H., Ye, Z.: Reducing AsA leads to leaf lesion and defence response in knock-down of the AsA biosynthetic enzyme GDP-D-mannose pyrophosphorylase gene in tomato plant. — PLoS ONE 8: e61987, 2013.

    Article  Google Scholar 

  • Zhang, C.J., Liu, J.X., Zhang, Y.Y., Cai, X.F., Gong, P.J., Zhang, J.H., Wang, T.T., Li, H.X., Ye, Z.B.: Over-expression of SlGMEs leads to ascorbate accumulation with enhanced oxidative stress, cold, and salt tolerance in tomato. — Plant Cell Rep. 30: 389–398, 2010.

    Article  PubMed  Google Scholar 

  • Zhang, W., Gruszewski, H.A., Chevone, B.I., Nessler, C.L.: An Arabidopsis purple acid phosphatase with phytase activity increases foliar ascorbate. — Plant Physiol. 146: 431–440, 2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S.-J. Zhao or Q.-W. Meng.

Additional information

Acknowledgements: This research was supported by the State Key Basic Research and Development Plan of China (2015CB150105), the Natural Science Foundation of China (31171474, 31371553), and the Research Award Foundation for Outstanding Young Scientist of Shandong Province (2014BSB01031). The first two authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, DY., Ma, NN., Liu, ZM. et al. Suppression of tomato SlGGP aggravates methyl viologen-mediated oxidative stress. Biol Plant 60, 677–685 (2016). https://doi.org/10.1007/s10535-016-0628-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10535-016-0628-0

Additional key words

Navigation