Skip to main content
Log in

A protein related to prokaryotic UMP kinases is involved in psaA/B transcript accumulation in Arabidopsis

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Dpt1 (d efect in p saA/B t ranscript accumulation 1) is a novel photosystem (PS) I mutant in Arabidopsis. dpt1 mutants fail to grow photoautotrophically, and are impaired in the accumulation of psaA/B transcripts while the transcript levels for the remaining PSI subunits, for subunits of the PSII, the cyt-b 6 /f-complex, and the ribulose-1,5-bisphosphate carboxylase are comparable to the wild type. In-organello run-on transcription assays demonstrate that the lower psaA/B transcript abundance in dpt1-1 is not caused by the inability to transcribe the psaA/psaB/rps14 operon. psaA/B transcripts in the mutant are associated with polyribosomes and translated. Thus, the mutation affects post-transcriptional processes specific for psaA/B. The dpt1 gene was isolated by map-based cloning. The protein is localized in the stroma of the chloroplast and exhibits striking similarities to UMP kinases of prokaryotic origin. Our results show that the nuclear encoded protein Dpt1 is essential for retaining photosynthetic activity in higher plant chloroplasts and involved in post-transcriptional steps of psaA/B transcript accumulation. We discuss that Dpt1 may be a bifunctional protein that couples the pyrimidine metabolism to the photosynthetic electron transport.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

dpt1 :

Defect in psaA/B transcript accumulation 1

PSI:

Photosystem I

UMP:

Uridine monophosphate

References

  • Alonso JM, Stepanova AN, Leisse TJ, Kim CJ, Chen H, Shinn P, Stevenson DK, Zimmerman J, Barajas P, Cheuk R, Gadrinab C, Heller C, Jeske A, Koesema E, Meyers CC, Parker H, Prednis L, Ansari Y, Choy N, Deen H, Geralt M, Hazari N, Hom E, Karnes M, Mulholland C, Ndubaku R, Schmidt I, Guzman P, Aguilar-Henonin L, Schmid M, Weigel D, Carter DE, Marchand T, Risseeuw E, Brogden D, Zeko A, Crosby WL, Berry CC, Ecker JR (2003) Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301:653–657. doi:10.1126/science.1086391

    Article  PubMed  Google Scholar 

  • Amann K, Lezhneva L, Wanner G, Herrmann RG, Meurer J (2004) ACCUMULATION OF PHOTOSYSTEM ONE1, a member of a novel gene family, is required for accumulation of [4Fe–4S] cluster-containing chloroplast complexes and antenna proteins. Plant Cell 16:3084–3097. doi:10.1105/tpc.104.024935

    Article  PubMed  CAS  Google Scholar 

  • Ballottari M, Govoni C, Caffarri S, Morosinotto T (2004) Stoichiometry of LHCI antenna polypeptides and characterization of gap and linker pigments in higher plants photosystem I. Eur J Biochem 271:4659–4665. doi:10.1111/j.1432-1033.2004.04426.x

    Article  PubMed  CAS  Google Scholar 

  • Barkan A (1988) Proteins encoded by a complex chloroplast transcription unit are each translated from both monocistronic and polycistronic messenger-RNAs. EMBO J 7:2637–2644

    PubMed  CAS  Google Scholar 

  • Barkan A (1993) Nuclear mutants of maize with defects in chloroplast polysome assembly have altered chloroplast RNA metabolism. Plant Cell 5:389–402

    Article  PubMed  CAS  Google Scholar 

  • Barneche F, Winter V, Crevecoeur M, Rochaix JD (2006) ATAB2 is a novel factor in the signalling pathway of light-controlled synthesis of photosystem proteins. EMBO J 25:5907–5918. doi:10.1038/sj.emboj.7601472

    Article  PubMed  CAS  Google Scholar 

  • Barth C, Krause GH (2002) Study of tobacco transformants to assess the role of chloroplastic NAD(P)H dehydrogenase in photoprotection of photosystems I and II. Planta 216:273–279. doi:10.1007/s00425-002-0843-0

    Article  PubMed  CAS  Google Scholar 

  • Bell CJ, Ecker JR (1994) Assignment of 30 microsatellite loci to the linkage map of Arabidopsis. Genomics 19:137–144. doi:10.1006/geno.1994.1023

    Article  PubMed  CAS  Google Scholar 

  • Ben-Shem A, Frolow F, Nelson N (2003) Crystal structure of plant photosystem I. Nature 426:630–635. doi:10.1038/nature02200

    Article  PubMed  CAS  Google Scholar 

  • Briozzo P, Evrin C, Meyer P, Assairi L, Joly N, Barzu O, Gilles AM (2005) Structure of Escherichia coli UMP kinase differs from that of other nucleoside monophosphate kinases and sheds new light on enzyme regulation. J Biol Chem 280:25533–25540. doi:10.1074/jbc.M501849200

    Article  PubMed  CAS  Google Scholar 

  • Chitnis PR (2001) Photosystem I: function and physiology. Annu Rev Plant Physiol Plant Mol Biol 52:593–626. doi:10.1146/annurev.arplant.52.1.593

    Article  PubMed  CAS  Google Scholar 

  • Cournac L, Redding K, Bennoun P, Peltier G (1997) Limited photosynthetic electron flow but no CO2 fixation in Chlamydomonas mutants lacking photosystem I. FEBS Lett 416:65–68. doi:10.1016/S0014-5793(97)01170-8

    Article  PubMed  CAS  Google Scholar 

  • Emanuelsson O, Nielsen H, Brunak S, von Heijne G (2000) Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J Mol Biol 300:1005–1016. doi:10.1006/jmbi.2000.3903

    Article  PubMed  CAS  Google Scholar 

  • Ensminger I, Sveshnikov D, Campbell DA, Funk C, Jansson S, Lloyd J, Shibistova O, Oquist G (2004) Intermittent low temperatures constrain spring recovery of photosynthesis in boreal Scots pine forests. Glob Change Biol 10:995–1008. doi:10.1111/j.1365-2486.2004.00781.x

    Article  Google Scholar 

  • Fey V, Wagner R, Bräutigam K, Wirtz M, Hell R, Dietzmann A, Leister D, Oelmüller R, Pfannschmidt T (2005) Retrograde plastid redox signals in the expression of nuclear genes for chloroplast proteins of Arabidopsis thaliana. J Biol Chem 280:5318–5328. doi:10.1074/jbc.M406358200

    Article  PubMed  CAS  Google Scholar 

  • Haldrup A, Lunde C, Scheller HV (2003) Arabidopsis thaliana plants lacking the PSI-D subunit of photosystem I suffer severe photoinhibition, have unstable photosystem I complexes, and altered redox homeostasis in the chloroplast stroma. J Biol Chem 278:33276–33283. doi:10.1074/jbc.M305106200

    Article  PubMed  CAS  Google Scholar 

  • Hayashida N, Matsubayashi T, Shinozaki K, Sugiura M, Inoue K, Hiyama T (1987) The gene for the 9 kd polypeptide, a possible apoprotein for the iron-sulfur centers A and B of the photosystem I complex, in tobacco chloroplast DNA. Curr Genet 12:247–250. doi:10.1007/BF00435285

    Article  PubMed  CAS  Google Scholar 

  • Heim U, Weber H, Bäumlein H, Wobus U (1993) A sucrose-synthase gene of Vicia faba L.: expression pattern in developing seeds in relation to starch synthesis and metabolic regulation. Planta 191:394–401. doi:10.1007/BF00195698

    Article  PubMed  CAS  Google Scholar 

  • Jenkins BD, Barkan A (2001) Recruitment of a peptidyl-tRNA hydrolase as a facilitator of group II intron splicing in chloroplasts. EMBO J 20:872–879. doi:10.1093/emboj/20.4.872

    Article  PubMed  CAS  Google Scholar 

  • Jensen PE, Bassi R, Boekema EJ, Dekker JP, Jansson S, Leister D, Robinson C, Scheller HV (2007) Structure, function and regulation of plant photosystem I. Biochim Biophys Acta 1767:335–352. doi:10.1016/j.bbabio.2007.03.004

    Article  PubMed  CAS  Google Scholar 

  • Jiao S, Thornsberry JM, Elthon TE, Newton KJ (2005) Biochemical and molecular characterization of photosystem I deficiency in the NCS6 mitochondrial mutant of maize. Plant Mol Biol 57:303–313. doi:10.1007/s11103-004-7792-x

    Article  PubMed  CAS  Google Scholar 

  • Jordan P, Fromme P, Witt HT, Klukas O, Sänger W, Krauss N (2001) Three-dimensional structure of cyanobacterial photosystem I at 2.5 Å resolution. Nature 411:909–917. doi:10.1038/35082000

    Article  PubMed  CAS  Google Scholar 

  • Kholti A, Charlier D, Gigot D, Huysveld N, Roovers M, Glansdorff N (1998) pyrH-encoded UMP-kinase directly participates in pyrimidine-specific modulation of promoter activity in Escherichia coli. J Mol Biol 280:571–582. doi:10.1006/jmbi.1998.1910

    Article  PubMed  CAS  Google Scholar 

  • Kusnetsov V, Herrmann RG, Kulaeva ON, Oelmüller R (1998) Cytokinin stimulates and abscisic acid inhibits greening of etiolated Lupinus luteus cotyledons by affecting the expression of the light-sensitive protochlorophyllide oxidoreductase. Mol Gen Genet 259:21–28

    PubMed  CAS  Google Scholar 

  • Lee JW, Tevault CV, Owens TG, Greenbaum E (1996) Oxygenic photoautotrophic growth without photosystem I. Science 273:364–367. doi:10.1126/science.273.5273.364

    Article  PubMed  CAS  Google Scholar 

  • Legen J, Kemp S, Krause K, Profanter B, Herrmann RG, Maier RM (2002) Comparative analysis of plastid transcription profiles of entire plastid chromosomes from tobacco attributed to wild-type and PEP-deficient transcription machineries. Plant J 31:171–188. doi:10.1046/j.1365-313X.2002.01349.x

    Article  PubMed  CAS  Google Scholar 

  • Lezhneva L, Meurer J (2004) The nuclear factor HCF145 affects chloroplast psaA-psaB-rps14 transcript abundance in Arabidopsis thaliana. Plant J 38:740–753. doi:10.1111/j.1365-313X.2004.02081.x

    Article  PubMed  CAS  Google Scholar 

  • Lezhneva L, Amann K, Meurer J (2004) The universally conserved HCF101 protein is involved in assembly of [4Fe–4S]-cluster-containing complexes in Arabidopsis thaliana chloroplasts. Plant J 37:174–185

    PubMed  CAS  Google Scholar 

  • Lu Y, Turner RJ, Switzer RL (1996) Function of RNA secondary structures in transcriptional attenuation of the Bacillus subtilis pyr operon. Proc Natl Acad Sci USA 93:14462–14467

    Article  PubMed  CAS  Google Scholar 

  • Maxwell K, Johnson GN (2000) Chlorophyll fluorescence—a practical guide. J Exp Bot 51:659–668. doi:10.1093/jexbot/51.345.659

    Article  PubMed  CAS  Google Scholar 

  • Mullet JE, Klein RR (1987) Transcription and RNA stability are important determinants of higher-plant chloroplast RNA levels. EMBO J 6:1571–1579

    PubMed  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–493. doi:10.1111/j.1399-3054.1962.tb08052.x

    Article  CAS  Google Scholar 

  • Naver H, Boudreau E, Rochaix JD (2001) Functional studies of Ycf3: its role in assembly of photosystem I and interactions with some of its subunits. Plant Cell 13:2731–2745

    Article  PubMed  CAS  Google Scholar 

  • Perron K, Goldschmidt-Clermont M, Rochaix JD (1999) A factor related to pseudouridine synthases is required for chloroplast group II intron trans-splicing in Chlamydomonas reinhardtii. EMBO J 18:6481–6490. doi:10.1093/emboj/18.22.6481

    Article  PubMed  CAS  Google Scholar 

  • Pfannschmidt T, Nilsson A, Tullberg A, Link G, Allen JF (1999) Direct transcriptional control of the chloroplast genes psbA and psaAB adjusts photosynthesis to light energy distribution in plants. IUBMB Life 48:271–276

    PubMed  CAS  Google Scholar 

  • Porra RJ, Thompson WA, Kriedemann PE (1989) Determination of accurate extinction coefficients and simultaneous-equations for assaying chlorophyll-a and chlorophyll-b extracted with 4 different solvents—verification of the concentration of chlorophyll standards by atomic-absorption spectroscopy. Biochim Biophys Acta 975:384–394. doi:10.1016/S0005-2728(89)80347-0

    Article  CAS  Google Scholar 

  • Postel EH, Berberich SJ, Flint SJ, Ferrone CA (1993) Human c-myc transcription factor PuF identified as nm23–H2 nucleoside diphosphate kinase, a candidate suppressor of tumor metastasis. Science 261:478–480. doi:10.1126/science.8392752

    Article  PubMed  CAS  Google Scholar 

  • Redding K, Cournac L, Vassiliev IR, Golbeck JH, Peltier G, Rochaix JD (1999) Photosystem I is indispensable for photoautotrophic growth, CO2 fixation, and H2 photoproduction in Chlamydomonas reinhardtii. J Biol Chem 274:10466–10473. doi:10.1074/jbc.274.15.10466

    Article  PubMed  CAS  Google Scholar 

  • Ruf S, Kössel H, Bock R (1997) Targeted inactivation of a tobacco intron-containing open reading frame reveals a novel chloroplast-encoded photosystem I-related gene. J Cell Biol 139:95–102. doi:10.1083/jcb.139.1.95

    Article  PubMed  CAS  Google Scholar 

  • Rushlow KE, Hallick RB (1982) The isolation and purification of a transcriptionally active chromosome from chloroplast of Euglena gracilis. In: Edelman M, Hallick RB, Chua N-H (eds) Methods in chloroplast molecular biology. Elsevier, Amsterdam, pp 543–550

    Google Scholar 

  • Shinozaki K, Ohme M, Tanaka M, Wakasugi T, Hayashida N, Matsubayashi T, Zaita N, Chunwongse J, Obokata J, Yamaguchi-Shinozaki K, Ohto C, Torazawa K, Meng BY, Sugita M, Deno H, Kamogashira T, Yamada K, Kusuda J, Takaiwa F, Kato A, Tohdoh N, Shimada H, Sugiura M (1986) The complete nucleotide sequence of the tobacco chloroplast genome: its gene organization and expression. EMBO J 5:2043–2049

    PubMed  CAS  Google Scholar 

  • Smart LB, Anderson SL, McIntosh L (1991) Targeted genetic inactivation of the photosystem I reaction center in the cyanobacterium Synechocystis sp. PCC 6803. EMBO J 10:3289–3296

    PubMed  CAS  Google Scholar 

  • Stöckel J, Oelmüller R (2004) A novel protein for photosystem I biogenesis. J Biol Chem 279:10243–10251. doi:10.1074/jbc.M309246200

    Article  PubMed  Google Scholar 

  • Stöckel J, Bennewitz S, Hein P, Oelmüller R (2006) The evolutionary conserved tetratrico peptide repeat protein pale yellow green7 is required for photosystem I accumulation in Arabidopsis and copurifies with the complex. Plant Physiol 141:870–878. doi:10.1104/pp.106.078147

    Article  PubMed  Google Scholar 

  • Sugiura M (2003) History of chloroplast genomics. Photosynth Res 76:371–377. doi:10.1023/A:1024913304263

    Article  PubMed  CAS  Google Scholar 

  • Yabe T, Morimoto K, Kikuchi S, Nishio K, Terashima I, Nakai M (2004) The Arabidopsis chloroplastic NifU-like protein CnfU, which can act as an iron-sulfur cluster scaffold protein, is required for biogenesis of ferredoxin and photosystem I. Plant Cell 16:993–1007. doi:10.1105/tpc.020511

    Article  PubMed  CAS  Google Scholar 

  • Zhou L, Lacroute F, Thornburg R (1998) Cloning, expression in Escherichia coli, and characterization of Arabidopsis thaliana UMP/CMP kinase. Plant Physiol 117:245–254. doi:10.1104/pp.117.1.245

    Article  PubMed  CAS  Google Scholar 

  • Zrenner R, Stitt M, Sonnewald U, Boldt R (2006) Pyrimidine and purine biosynthesis and degradation in plants. Annu Rev Plant Biol 57:805–836. doi:10.1146/annurev.arplant.57.032905.105421

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Friedrich-Schiller-University Jena. We thank Dr. W. Fischer for the electron micrographs, Bernard Lepetit for the help with the 77 K measurements, Dr. Masato Nakai for providing the AtCnfU-IVb antibodies, and H. Becker for skillful assistance. We thank Lars Dietzel, Sebastian Steiner and Iris Camehl for their help and the NASC stock center for providing the insertion line N829192.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralf Oelmüller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hein, P., Stöckel, J., Bennewitz, S. et al. A protein related to prokaryotic UMP kinases is involved in psaA/B transcript accumulation in Arabidopsis . Plant Mol Biol 69, 517–528 (2009). https://doi.org/10.1007/s11103-008-9433-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-008-9433-2

Keywords

Navigation