Skip to main content
Log in

Genetic manipulation of lysine catabolism in maize kernels

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

In plants, lysine catabolism is thought to be controlled by a bifunctional enzyme, lysine ketoglutarate reductase/saccharopine dehydrogenase (LKR/SDH). Lysine is converted to saccharopine, through condensation with α-ketoglutarate, by LKR, and subsequently to glutamate and α-aminoadipate-δ-semialdehyde by SDH. To investigate lysine catabolism in maize kernels, we generated transgenic plants with suppressed LKR/SDH activity in either endosperm or embryo. We found that the suppression of LKR/SDH in endosperm induced an increase in free lysine in developing endosperm, which peaked at 32 days after pollination. At later stages of kernel development, most of the free lysine was found in the embryo along with an elevated level of saccharopine. By combining endosperm LKR/SDH suppression with embryo LKR/SDH suppression through crosses, the saccharopine level in embryo was reduced and resulted in higher lysine accumulation in mature kernels. These results reveal new insights into how free lysine level is regulated and distributed in developing maize kernels and demonstrate the possibility of engineering high lysine corn via the suppression of lysine catabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Armstrong CL, Rout JR (2001) A novel Agrobacterium-mediated plant transformation method. WO Patent 0109302

  • Arruda P, Da Silva WJ (1979) Amino acid composition of vascular sap of maize ear peduncle. Phytochemistry 18:409–410. doi:10.1016/S0031-9422(00)81876-2

    Article  CAS  Google Scholar 

  • Arruda P, Kemper EL, Papes F, Leite A (2000) Regulation of lysine catabolism in higher plants. Trends Plant Sci 5:324–330. doi:10.1016/S1360-1385(00)01688-5

    Article  PubMed  CAS  Google Scholar 

  • Azevedo RA, Damerval C, Landry J, Lea PJ, Bellato CM, Meinhardt LW et al (2003) Regulation of maize lysine metabolism and endosperm protein synthesis by opaque and floury mutations. Eur J Biochem 270:4898–4908. doi:10.1111/j.1432-1033.2003.03890.x

    Article  PubMed  CAS  Google Scholar 

  • Azevedo RA, Damerval C, Lea PJ, Landry J, Bellato CM, Meinhardt LW et al (2004a) Genetic control of lysine metabolism in maize endosperm mutants. Funct Plant Biol 31:339–348. doi:10.1071/FP03173

    Article  CAS  Google Scholar 

  • Azevedo RA, Lea PJ, Damerval C, Landry J, Bellato CM, Meinhardt LW et al (2004b) Regulation of lysine metabolism and endosperm protein synthesis by the opaque-5 and opaque-7 maize mutations. J Agric Food Chem 52:4865–4871. doi:10.1021/jf035422h

    Article  PubMed  CAS  Google Scholar 

  • Azevedo RA, Lancien M, Lea PJ (2006) The aspartic acid metabolic pathway, an exciting and essential pathway in plants. Amino Acids 30:143–162. doi:10.1007/s00726-005-0245-2

    Article  PubMed  CAS  Google Scholar 

  • Belanger FC, Kriz AL (1991) Molecular basis for allelic polymorphism of the maize Globulin-1 gene. Genetics 129:863–872

    PubMed  CAS  Google Scholar 

  • Brinch-Pedersen H, Galili G, Knudsen S, Holm PB (1996) Engineering of the aspartate family biosynthetic pathway in barley (Hordeum vulgare L.) by transformation with heterologous genes encoding feed-back-insensitive aspartate kinase and dihydrodipicolinate synthase. Plant Mol Biol 32:611–620. doi:10.1007/BF00020202

    Article  PubMed  CAS  Google Scholar 

  • Coleman CE, Larkins BA (1999) The prolamins of maize. In: Shewry PR, Casey R (eds) Seed proteins. Kluwer Academic Publishers, The Netherlands, pp 109–139

    Google Scholar 

  • Falco SC, Guida T, Locke M, Mauvais J, Sanders C, Ward RT et al (1995) Transgenic canola and soybean seeds with increased lysine. Biotechnology 13:577–582. doi:10.1038/nbt0695-577

    Article  PubMed  CAS  Google Scholar 

  • Frizzi A, Huang S, Gilbertson LA, Armstrong TA, Luethy MH, Malvar TM (2008) Modifying lysine biosynthesis and catabolism in corn with a single bifunctional expression/silencing transgene cassette. Plant Biotechnol 6:13–21

    CAS  Google Scholar 

  • Galili G (2004) New insights into the regulation and functional significance of lysine metabolism in plants. Annu Rev Plant Physiol Plant Mol Biol 53:27–43. doi:10.1146/annurev.arplant.53.091401.110929

    Google Scholar 

  • Heck GR, Chamberlain AK, Ho TH (1993) Barley embryo globulin 1 gene, Beg1: characterization of cDNA, chromosome mapping and regulation of expression. Mol Gen Genet 239:209–218

    PubMed  CAS  Google Scholar 

  • Hermann T (2003) Industrial production of amino acids by coryneform bacteria. J Biotechnol 104:155–172. doi:10.1016/S0168-1656(03)00149-4

    Article  PubMed  CAS  Google Scholar 

  • Himber C, Dunoyer P, Moissiard G, Ritzenthaler C, Voinnet O (2003) Transitivity-dependent and -independent cell-to-cell movement of RNA silencing. EMBO J 22:4523–4533. doi:10.1093/emboj/cdg431

    Article  PubMed  CAS  Google Scholar 

  • Houmard NM, Mainville JL, Bonin CP, Huang S, Luethy MH, Malvar TM (2007) High lysine corn generated by endosperm specific suppression of lysine catabolism using RNAi. Plant Biotechnol 5:605–614. doi:10.1111/j.1467-7652.2007.00265.x

    Article  CAS  Google Scholar 

  • Huang S, Gilbertson LA, Adams TH, Malloy KP, Reisenbigler EK, Birr DH et al (2004) Generation of marker-free transgenic maize by regular two-border Agrobacterium transformation vectors. Transgenic Res 13:451–461. doi:10.1007/s11248-004-1453-3

    Article  PubMed  CAS  Google Scholar 

  • Huang S, Kruger DE, Frizzi A, D’Ordine RL, Florida CA, Adams WR et al (2005) High lysine corn produced by the combination of enhanced lysine biosynthesis and reduced zein accumulation. Plant Biotechnol 3:555–569. doi:10.1111/j.1467-7652.2005.00146.x

    Article  CAS  Google Scholar 

  • Huang S, Frizzi A, Florida CA, Kruger DE, Luethy MH (2006) High lysine and high tryptophan transgenic maize resulting from the reduction of both 19- and 22-kD α-zeins. Plant Mol Biol 61:525–535. doi:10.1007/s11103-006-0027-6

    Article  PubMed  CAS  Google Scholar 

  • Karchi H, Shaul O, Galili G (1994) Lysine synthesis and catabolism are coordinately regulated during tobacco seed development. Proc Natl Acad Sci USA 91:2577–2581. doi:10.1073/pnas.91.7.2577

    Article  PubMed  CAS  Google Scholar 

  • Kemper EL, Cord-Neto G, Papes F, Moraes KCM, Leite A, Arruda P (1999) The role of Opaque2 in the control of lysine-degrading activities in developing maize endosperm. Plant Cell 11:1981–1993

    Article  PubMed  CAS  Google Scholar 

  • Mazur B, Krebbers E, Tingey S (1999) Gene discovery and product development for grain quality traits. Science 285:372–375. doi:10.1126/science.285.5426.372

    Article  PubMed  CAS  Google Scholar 

  • Mertz ET, Bates LS, Nelson EZ (1964) Mutant gene that changes protein composition and increases lysine content of maize endosperm. Science 145:279–280. doi:10.1126/science.145.3629.279

    Article  PubMed  CAS  Google Scholar 

  • Nelson EZ, Mertz ET, Bates LS (1965) Second mutant gene affecting the amino acid pattern of maize endosperm proteins. Science 150:1469–1470. doi:10.1126/science.150.3702.1469

    Article  PubMed  CAS  Google Scholar 

  • Perl A, Shaul O, Galili G (1992) Regulation of lysine synthesis in transgenic potato plants expressing a bacterial dihydrodipicolinate synthase in their chloroplasts. Plant Mol Biol 19:815–823. doi:10.1007/BF00027077

    Article  PubMed  CAS  Google Scholar 

  • Shaul O, Galili G (1993) Concerted regulation of lysine and threonine synthesis in tobacco plants expressing bacterial feedback-insensitive aspartate kinase and dihydrodipicolinate synthase. Plant Mol Biol 23:759–768. doi:10.1007/BF00021531

    Article  PubMed  CAS  Google Scholar 

  • Stepansky A, Less H, Angelovici R, Aharon R, Zhu X, Galili G (2006) Lysine catabolism, an effective versatile regulator of lysine level in plants. Amino Acids 30:121–125. doi:10.1007/s00726-005-0246-1

    Article  PubMed  CAS  Google Scholar 

  • Tang G, Miron D, Zhu-Shimoni JX, Galili G (1997) Regulation of lysine catabolism through lysine-ketoglutarate reductase and saccharopine dehydrogenase in Arabidopsis. Plant Cell 9:1305–1316

    Article  PubMed  CAS  Google Scholar 

  • Zhu X, Galili G (2003) Increased lysine synthesis coupled with a knockout of its catabolism synergistically boosts lysine content and also transregulates the metabolism of other amino acids in Arabidopsis seeds. Plant Cell 15:845–853. doi:10.1105/tpc.009647

    Article  PubMed  CAS  Google Scholar 

  • Zhu X, Galili G (2004) Lysine metabolism is concurrently regulated by synthesis and catabolism in both reproductive and vegetative tissues. Plant Physiol 135:129–136. doi:10.1104/pp.103.037168

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Monsanto trait development group for the greenhouse and field care, and the Monsanto crop analytic group at St. Louis for the seed composition analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shihshieh Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reyes, A.R., Bonin, C.P., Houmard, N.M. et al. Genetic manipulation of lysine catabolism in maize kernels. Plant Mol Biol 69, 81–89 (2009). https://doi.org/10.1007/s11103-008-9409-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-008-9409-2

Keywords

Navigation