Skip to main content
Log in

A small plant-specific protein family of ABI five binding proteins (AFPs) regulates stress response in germinating Arabidopsis seeds and seedlings

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

The transcription factor ABA-Insensitive5 (ABI5) is a key regulator of ABA signaling and stress response in Arabidopsis seeds and seedlings. Potential ABI5-interacting proteins were identified by a yeast two-hybrid screen; the most prevalent interactors were a family of four highly conserved plant-specific proteins with no domains of known function, but homology to a previously characterized ABI Five Binding Protein (AFP). This study compares expression and function of the family members. The AFPs are induced by ABA and/or dehydrating stresses in young seedlings, but the developmental timing of their induction differs. Mutations in AFP1 or AFP2 result in increased sensitivity to ABA and salt, whereas afp4 mutants are mildly ABA-resistant. AFP2, like AFP1, acts epistatically to ABI5. Reduced germination or seedling growth of the mutants under stress correlates with a higher level of ABI5 protein when compared to wild-type seedlings, but it is not clear whether this is a cause or effect of the reduced growth. Although both ABI5 and the AFPs are ABA-induced, the ABI5:AFP ratio increases at high ABA concentrations, maintaining growth inhibition under severe stress. An AFP2:GFP fusion, which complements the afp2 mutation, is nuclear-localized in seedlings exposed to stress, but becomes delocalized before being degraded following removal of stress. The AFPs may also interact to varying extents with many ABI5-related bZIP transcription factors. This study suggests that germination and seedling growth are regulated by antagonistic interactions among at least two functionally redundant families, the AFPs and the ABI5-related proteins, providing a mechanism to fine-tune seedling stress responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

ABA:

Abscisic acid

ABI:

ABA-insensitive

AFP:

ABI Five Binding Protein

ABF:

ABRE binding factor

ABRE:

ABA-responsive element

AD:

GAL4 activation domain

AtEm :

Arabidopsis early methionine-labelled

AREB:

ABA response element binding factor

AtDPBF:

Arabidopsis thaliana Dc3 promoter binding factor

BD:

GAL4 DNA-binding domain

bZIP:

Basic leucine zipper

EEL:

Enhanced em level

GM:

Germination media

GUS:

Beta-glucuronidase

LEA:

Late embryogenesis abundant

Min:

Minimal media

RAB:

Responsive to ABA

TMAC2:

Two or more ABREs-containing gene 2

References

  • Alonso JM, Stepanova AN, Leisse TJ, Kim CJ, Chen H, Shinn P, Stevenson DK, Zimmerman J, Barajas P, Cheuk R, Gadrinab C, Heller C, Jeske A, Koesema E, Meyers CC, Parker H, Prednis L, Ansari Y, Choy N, Deen H, Geralt M, Hazari N, Hom E, Karnes M, Mulholland C, Ndubaku R, Schmidt I, Guzman P, Aguilar-Henonin L, Schmid M, Weigel D, Carter DE, Marchand T, Risseeuw E, Brogden D, Zeko A, Crosby WL, Berry CC, Ecker JR (2003) Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301:653–657

    Article  PubMed  Google Scholar 

  • Arenas-Huertero F, Arroyo A, Zhou L, Sheen J, León P (2000) Analysis of Arabidopsis glucose insensitive mutants, gin5 and gin6, reveals a central role of the plant hormone ABA in the regulation of plant vegetative development by sugar. Genes Dev 14:2085–2096

    PubMed  CAS  Google Scholar 

  • Bensmihen S, Rippa S, Lambert G, Jublot D, Pautot V, Granier F, Giraudat J, Parcy F (2002) The homologous ABI5 and EEL transcription factors function antagonistically to fine-tune gene expression during late embryogenesis. Plant Cell 14:1391–1403

    Article  PubMed  CAS  Google Scholar 

  • Bensmihen S, Giraudat J, Parcy F (2005) Characterization of three homologous basic leucine zipper transcription factors (bZIP) of the ABI5 family during Arabidopsis thaliana embryo maturation. J Exp Bot 56:597–603

    Article  PubMed  CAS  Google Scholar 

  • Brocard I, Lynch T, Finkelstein R (2002) Regulation and role of the Arabidopsis ABA-insensitive (ABI)5 gene in ABA, sugar and stress response. Plant Physiol 129:1533–1543

    Article  PubMed  CAS  Google Scholar 

  • Carles C, Bies-Ethève N, Aspart L, Leon-Kloosterziel KM, Koornneef M, Echeverria M, Delseny M (2002) Regulation of Arabidopsis thaliana Em genes: role of ABI5. Plant J 30:373–383

    Article  PubMed  CAS  Google Scholar 

  • Chae MJ, Lee JS, Nam MH, Cho K, Hong JY, Yi SA, Suh SC, Yoon IS (2007) A rice dehydration-inducible SNF1-related protein kinase 2 phosphorylates an abscisic acid responsive element-binding factor and associates with ABA signaling. Plant Mol Biol 63:151–169

    Article  PubMed  CAS  Google Scholar 

  • Choi H, Hong J, Ha J, Kang J, Kim S (2000) ABFs, a family of ABA-responsive element binding factors. J Biol Chem 275:1723–1730

    Article  PubMed  CAS  Google Scholar 

  • Choi HI, Park HJ, Park JH, Kim S, Im MY, Seo HH, Kim YW, Hwang I, Kim SY (2005) Arabidopsis calcium-dependent protein kinase AtCPK32 interacts with ABF4, a transcriptional regulator of abscisic acid-responsive gene expression, and modulates its activity. Plant Physiol 139:1750–1761

    Article  PubMed  CAS  Google Scholar 

  • Clough S, Bent A (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  PubMed  CAS  Google Scholar 

  • Cutler S, Ehrhardt D, Griffitts J, Somerville C (2000) Random GFP::cDNA fusions enable visualization of subcellular structures in cells of Arabidopsis at a high frequency. Proc Natl Acad Sci USA 97:3718–3723

    Article  PubMed  CAS  Google Scholar 

  • De Smet I, Signora L, Beeckman T, Inze D, Foyer C, Zhang H (2003) An abscisic acid-sensitive checkpoint in lateral root development in Arabidopsis. Plant J 33:543–555

    Article  PubMed  Google Scholar 

  • Finkelstein RR (1994) Mutations at two new Arabidopsis ABA response loci are similar to the abi3 mutations. Plant J 5:765–771

    Article  Google Scholar 

  • Finkelstein R, Lynch T (2000) The Arabidopsis abscisic acid response gene ABI5 encodes a basic leucine zipper transcription factor. Plant Cell 12:599–609

    Article  PubMed  CAS  Google Scholar 

  • Finkelstein R, Gampala S, Rock C (2002) Abscisic acid signaling in seeds and seedlings. Plant Cell 14:S15–S45

    PubMed  CAS  Google Scholar 

  • Finkelstein R, Gampala SSL, Lynch TJ, Thomas TL, Rock CD (2005) Redundant and distinct functions of the ABA response loci ABA-INSENSITIVE(ABI)5 and ABRE-BINDING FACTOR (ABF)3. Plant Mol Biol 59:253–267

    Article  PubMed  CAS  Google Scholar 

  • Fujii H, Verslues PE, Zhu JK (2007) Identification of two protein kinases required for abscisic acid regulation of seed germination, root growth, and gene expression in Arabidopsis. Plant Cell 19:485–494

    Article  PubMed  CAS  Google Scholar 

  • Furihata T, Maruyama K, Fujita Y, Umezawa T, Yoshida R, Shinozaki K, Yamaguchi-Shinozaki K (2006) Abscisic acid-dependent multisite phosphorylation regulates the activity of a transcription activator AREB1. Proc Natl Acad Sci USA 103:1988–1993

    Article  PubMed  CAS  Google Scholar 

  • Haughn G, Somerville C (1986) Sulfonylurea-resistant mutants of Arabidopsis thaliana. Mol Gen Genet 204:430–434

    Article  CAS  Google Scholar 

  • Hirayama T, Shinozaki K (2007) Perception and transduction of abscisic acid signals: keys to the function of the versatile plant hormone ABA. Trends Plant Sci 12:343–351

    Article  PubMed  CAS  Google Scholar 

  • Huang MD, Wu WL (2007) Overexpression of TMAC2, a novel negative regulator of abscisic acid and salinity responses, has pleiotropic effects in Arabidopsis thaliana. Plant Mol Biol 63:557–569

    Article  PubMed  CAS  Google Scholar 

  • Jakoby M, Weisshaar B, Droege-Laser W, Vicente-Carbajosa J, Tiedemann J, Kroj T, Parcy F (2002) bZIP transcription factors in Arabidopsis. Trends Plant Sci 7:106–111

    Article  PubMed  CAS  Google Scholar 

  • Jefferson R, Kavanagh T, Bevan M (1987) GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907

    PubMed  CAS  Google Scholar 

  • Jiao Y, Ma L, Strickland E, Deng XW (2005) Conservation and divergence of light-regulated genome expression patterns during seedling development in Rice and Arabidopsis. Plant Cell 17:3239–3256

    Article  PubMed  CAS  Google Scholar 

  • Johnson RR, Wagner RL, Verhey SD, Walker-Simmons MK (2002) The abscisic acid-responsive kinase PKABA1 interacts with a seed-specific abscisic acid response element-binding factor, TaABF, and phosphorylates TaABF peptide sequences. Plant Physiol 130:837–846

    Article  PubMed  Google Scholar 

  • Kang J-Y, Choi H-I, Im M-Y, Kim SY (2002) Arabidopsis basic leucine zipper proteins that mediate stress-responsive abscisic acid signaling. Plant Cell 14:343–357

    Article  PubMed  CAS  Google Scholar 

  • Kilian J, Whitehead D, Horak J, Wanke D, Weinl S, Batistic O, D’Angelo C, Bornberg-Bauer E, Kudla J, Harter K (2007) The AtGenExpress global stress expression data set: protocols, evaluation and model data analysis of UV-B light, drought and cold stress responses. Plant J 50:347–363

    Article  PubMed  CAS  Google Scholar 

  • Kim J, Harter K, Theologis A (1997) Protein–protein interactions among the Aux/IAA proteins. Proc Natl Acad Sci USA 94:11786–11791

    Article  PubMed  CAS  Google Scholar 

  • Kim S, Ma J, Perret P, Li Z, Thomas T (2002) Arabidopsis ABI5 subfamily members have distinct DNA binding and transcriptional activities. Plant Physiol 130:688–697

    Article  PubMed  CAS  Google Scholar 

  • Kim S, Kang J-Y, Cho D-I, Park JH, Kim SY (2004) ABF2, an ABRE-binding bZIP factor, is an essential component of glucose signaling and its overexpression affects multiple stress tolerance. Plant J 40:75–87

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi Y, Murata M, Minami H, Yamamoto S, Kagaya Y, Hobo T, Yamamoto A, Hattori T (2005) Abscisic acid-activated SNRK2 protein kinases function in the gene-regulation pathway of ABA signal transduction by phosphorylating ABA response element-binding factors. Plant J 44:939–949

    Article  PubMed  CAS  Google Scholar 

  • Koornneef M, Jorna M, Brinkhorst-van der Swan D, Karssen C (1982) The isolation of abscisic acid (ABA)-deficient mutants by selection of induced revertants in non-germinating gibberellin sensitive lines of Arabidopsis thaliana (L.) Heynh. Theor Appl Genet 61:385–393

    CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  • Liu X, Baird W (2004) Identification of a novel gene, HaABRC, from Helianthus annus (Asteraceae) that is upregulated in response to drought, salinity, and abscisic acid. Am J Bot 91:184–191

    Article  CAS  Google Scholar 

  • Lopez-Molina L, Chua N-H (2000) A null mutation in a bZIP factor confers ABA-insensitivity in Arabidopsis thaliana. Plant Cell Physiol 41:541–547

    PubMed  CAS  Google Scholar 

  • Lopez-Molina L, Mongrand S, Chua N-H (2001) A postgermination developmental arrest checkpoint is mediated by abscisic acid and requires the ABI5 transcription factor in Arabidopsis. Proc Natl Acad Sci USA 98:4782–4787

    Article  PubMed  CAS  Google Scholar 

  • Lopez-Molina L, Mongrand S, McLachlin DT, Chait BT, Chua N-H (2002) ABI5 acts downstream of ABI3 to execute an ABA-dependent growth arrest during germination. Plant J 32:317–328

    Article  PubMed  CAS  Google Scholar 

  • Lopez-Molina L, Mongrand S, Kinoshita N, Chua N-H (2003) AFP is a novel negative regulator of ABA signaling that promotes ABI5 protein degradation. Genes Dev 17:410–418

    Article  PubMed  CAS  Google Scholar 

  • Lu C, Han M-H, Guevara-Garcia A, Fedoroff N (2002) Mitogen-activated protein kinase signaling in postgermination arrest of development by abscisic acid. Proc Natl Acad Sci USA 99:15812–15817

    Article  PubMed  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nakamura S, Lynch T, Finkelstein R (2001) Physical interactions between ABA response loci of Arabidopsis. Plant J 26:627–635

    Article  PubMed  CAS  Google Scholar 

  • Notredame C, Higgins DG, Heringa J (2000) T-coffee: a novel method for fast and accurate multiple sequence alignment. J Mol Biol 302:205–217

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch E, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

    Google Scholar 

  • Samson F, Brunaud V, Balzergue S, Dubreucq B, Lepiniec L, Pelletier G, Caboche M, Lecharny A (2002) FLAGdb/FST: a database of mapped flanking insertion sites (FSTs) of Arabidopsis thaliana T-DNA transformants. Nucleic Acids Res 30:94–97

    Article  PubMed  CAS  Google Scholar 

  • Smalle J, Kurepa J, Yang P, Emborg TJ, Babiychuk E, Kushnir S, Vierstra RD (2003) The pleiotropic role of the 26S proteasome subunit RPN10 in Arabidopsis growth and development supports a substrate-specific function in abscisic acid signaling. Plant Cell 15:965–980

    Article  PubMed  CAS  Google Scholar 

  • Stone SL, Williams LA, Farmer LM, Vierstra RD, Callis J (2006) KEEP ON GOING, a RING E3 ligase essential for Arabidopsis growth and development, is involved in abscisic acid signaling. Plant Cell 18:3415–3428

    Article  PubMed  CAS  Google Scholar 

  • Toufighi K, Brady SM, Austin R, Ly E, Provart NJ (2005) The botany array resource: e-Northerns, expression angling, and promoter analyses. Plant J 43:153–163

    Article  PubMed  CAS  Google Scholar 

  • Uno Y, Furihata T, Abe H, Yoshida R, Shinozaki K, Yamaguchi-Shinozaki K (2000) Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions. Proc Natl Acad Sci USA 97:11632–11637

    Article  PubMed  CAS  Google Scholar 

  • Von Arnim AG, Deng X-W (1994) Light inactivation of Arabidopsis photomorphogenic repressor COP1 involves a cell-specific regulation of its nucleocytoplasmic partitioning. Cell 79:1035–1045

    Article  Google Scholar 

  • Weatherwax SC, Williams SA, Tingay S, Tobin EM (1998) The phytochrome response of the Lemna gibba NPR1 gene is mediated primarily through changes in abscisic acid levels. Plant Physiol 116:1299–1305

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (2006) Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Ann Rev Plant Biol 57:781–803

    Article  CAS  Google Scholar 

  • Zhang Y, Yang C, Li Y, Zheng N, Chen H, Zhao Q, Gao T, Guo H, Xie Q (2007) SDIR1 is a RING Finger E3 ligase that positively regulates stress-responsive abscisic acid signaling in Arabidopsis. Plant Cell 19:1912–1929

    Article  PubMed  CAS  Google Scholar 

  • Zhu JK (2002) Salt and drought stress signal transduction in plants. Ann Rev Plant Biol 53:247–273

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the ABRC team at Ohio State University for efficient distribution of the T-DNA insertion lines from the SALK SIGnAL collection and the French Génoplante Program for the FLAG lines. We thank L. Lopez-Molina for the anti-AFP antibody. This work was supported by United States Department of Agriculture Grant #2003-35304-13201 to RRF and a fellowship from Sigma Delta Epsilon, Women in Science to MEG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruth Finkelstein.

Electronic supplementary material

Below is the link to the electronic supplementary material.

MOESM1 (DOC 230 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garcia, M.E., Lynch, T., Peeters, J. et al. A small plant-specific protein family of ABI five binding proteins (AFPs) regulates stress response in germinating Arabidopsis seeds and seedlings. Plant Mol Biol 67, 643–658 (2008). https://doi.org/10.1007/s11103-008-9344-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-008-9344-2

Keywords

Navigation