Skip to main content
Log in

Cloning of two SOS1 transporters from the seagrass Cymodocea nodosa. SOS1 transporters from Cymodocea and Arabidopsis mediate potassium uptake in bacteria

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Two cDNAs isolated from Cymodocea nodosa, CnSOS1A, and CnSOS1B encode proteins with high-sequence similarities to SOS1 plant transporters. CnSOS1A expressed in a yeast Na+-efflux mutant under the control of a constitutive expression promoter mimicked AtSOS1 from Arabidopsis; the wild type cDNA did not improve the growth of the recipient strain in the presence of Na+, but a cDNA mutant that expresses a truncated protein suppressed the defect of the yeast mutant. In similar experiments, CnSOS1B was not effective. Conditional expression, under the control of an arabinose responsive promoter, of the CnSOS1A and CnSOS1B cDNAs in an Escherichia coli mutant defective in Na+ efflux was toxic, and functional analyses were inconclusive. The same constructs transformed into an E. coli K+-uptake mutant revealed that CnSOS1A was also toxic, but that it slightly suppressed defective growth at low K+. Truncation in the C-terminal hydrophilic tail of CnSOS1A relieved the toxicity and proved that CnSOS1A was an excellent low-affinity K+ and Rb+ transporter. CnSOS1B mediated a transient, extremely rapid K+ or Rb+ influx. Similar tests with AtSOS1 revealed that it was not toxic and that the whole protein exhibited excellent K+ and Rb+ uptake characteristics in bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Amtmann A, Sanders D (1999) Mechanisms of Na+ uptake by plant cells. Adv Bot Res 29:75–112

    Article  CAS  Google Scholar 

  • Arai M, Pak JY, Nomura K, Nitta T (1991) Seawater-resistant, non-spherical protoplasts from seagrass leaves. Physiol Plant 83:551–559

    Article  Google Scholar 

  • Bañuelos MA, Garciadeblas B, Cubero B, Rodríguez-Navarro A (2002) Inventory and functional characterization of the HAK potassium transporters of rice. Plant Physiol 130:784–795

    Article  PubMed  Google Scholar 

  • Bañuelos MA, Synchrová H, Bleykasten-Grosshans C, Souciet J-L, Potier S (1998) The Nha1 antiporter of Saccharomyces cerevisiae mediates sodium and potassium efflux. Microbiology 144:2749–2758

    Article  PubMed  Google Scholar 

  • Benito B, Garciadeblás B, Schreier P, Rodríguez-Navarro A (2004) Novel P-type ATPases mediate high-affinity potassium or sodium uptake in fungi. Eukaryotic Cell 3:359–368

    Article  PubMed  CAS  Google Scholar 

  • Benito B, Rodríguez-Navarro A (2003) Molecular cloning and characterization of a sodium-pump ATPase of the moss Physcomitrella patens. Plant J 36:382–389

    Article  PubMed  CAS  Google Scholar 

  • Bohnert HJ, Golldack D, Ishitani M, Kamasani UR, Rammesmayer G, Shen B, Sheveleva E, Jensen RG (1996) Salt tolerance engineering requires multiple gene transfers. Ann NY Acad Sci 792:115–125

    Article  CAS  Google Scholar 

  • Bohnert HJ, Nelson DE, Jensen RG (1995) Adaptation to environmental stresses. Plant Cell 7:1099–1111

    Article  PubMed  CAS  Google Scholar 

  • Brunelli JP, Pall ML (1993) A series of yeast / Escherichia coli l expression vectors designed for directional cloning of cDNAs and cre/lox-mediated plasmid excision. Yeast 9:1309–1318

    Article  PubMed  CAS  Google Scholar 

  • Ding L, Zhu J-K (1997) Reduced Na+ uptake in the NaCl-hypersensitive sos1 mutant of Arabidopsis thaliana. Plant Physiol 113:795–799

    Article  PubMed  CAS  Google Scholar 

  • Epstein W, Schultz SG (1965) Cation transport in Escherichia coli. V. Regulation of cation content. J Gen Physiol 49:221–234

    Article  CAS  Google Scholar 

  • Fernández JA, García-Sánchez MJ, Felle HH (1999) Physiological evidence for a proton pump and sodium exclusion mechanism at the plasma membrane of the marine angiosperm Zostera marina L. J Exp Bot 50:1763–1768

    Article  Google Scholar 

  • Flowers TJ (2004) Improving crop salt tolerance. J Exp Bot 55:307–319

    Article  PubMed  CAS  Google Scholar 

  • Garciadeblas B, Benito B, Rodríguez-Navarro A (2001) Plant cells express several stress calcium ATPases but apparently no sodium ATPase. Plant Soil 235:181–192

    Article  CAS  Google Scholar 

  • Garciadeblas B, Benito B, Rodríguez-Navarro A (2002) Molecular cloning and functional expression in bacteria of the potassium transporters CnHAK1 and CnHAK2 of the seagrass Cymodocea nodosa. Plant Mol Biol 50:623–633

    Article  PubMed  CAS  Google Scholar 

  • Garthwaite AJ, Bothmer RV, Colmer TD (2005) Salt tolerance in wild Hordeum species is associated with restricted entry of Na+ and Cl- into the shoots. J Exp Bot 56:2365–2378

    Article  PubMed  CAS  Google Scholar 

  • Gong Q, Li P, Ma S, Rupassara SI, Bohnert HJ (2005) Salinity stress adaptation competence in the extremophile Thellungiella halophila in comparison with its relative Arabidopsis thaliana. Plant J 44:826–839

    Article  PubMed  CAS  Google Scholar 

  • Guffanti AA, Cheng J, Krulwich TA (1998) Electrogenic antiport activities of the Gram-positive Tet proteins include a Na+(K+)/K+ mode that mediates net K+ uptake. J Biol Chem 273:26447–26454

    Article  PubMed  CAS  Google Scholar 

  • Guzman L-M, Belin D, Carson MJ, Beckwith J (1995) Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J Bacteriol 177:4121–4130

    PubMed  CAS  Google Scholar 

  • Hamada A, Hibino T, Nakamura T, Takabe T (2001) Na+/H+ antiporter from Synechocystis species PCC 6803, homologous to SOS1, contains an aspartic residue and long C-terminal tail important for the carrier activity. Plant Physiol 125:437–446

    Article  PubMed  CAS  Google Scholar 

  • Haro R, Bañuelos MA, Senn ME, Barrero-Gil J, Rodríguez-Navarro A (2005) HKT1 mediates sodium uniport in roots. Pitfalls in the expression of HKT1 in yeast. Plant Physiol 139:1495–1506

    Article  PubMed  CAS  Google Scholar 

  • Haro R, Sainz L, Rubio F, Rodríguez-Navarro A (1999) Cloning of two genes encoding potassium transporters in Neurospora crassa and expression of the corresponding cDNAs in Saccharomyces cerevisiae. Mol Microbiol 31:511–520

    Article  PubMed  CAS  Google Scholar 

  • Heckman DS, Geiser DM, Eidell BR, Stauffer RL, Kardos NL, Hedges SB (2001) Molecular evidence for the early colonization of land by fungi and plants. Science 293:1129–1133

    Article  PubMed  CAS  Google Scholar 

  • Horodyski RJ, Knauth LP (1994) Life on land in the Precambrian. Science 263:494–498

    Article  PubMed  Google Scholar 

  • Inaba M, Sakamoto A, Murata N (2001) Functional expression in Escherichia coli of low-affinity and high-affinity Na+(Li+)/H+ antiporters of Synechocystis. J Bacteriol 183:1376–1384

    Article  PubMed  CAS  Google Scholar 

  • Jacobsen T, Adams RM (1958) Salt and silt in ancient Mesopotamian agriculture. Science 128:1251–1258

    Article  PubMed  Google Scholar 

  • Larkum AWD, Hartog CD (1989) Evolution and biogeography of seagrasses. In: Larkum AWD, McComb AJ, Sheperd SA (eds) Biology of seagrasses. Elsevier, Amsterdam, pp112–156

    Google Scholar 

  • Madrid R, Gómez MJ, Ramos J, Rodríguez-Navarro A (1998) Ectopic potassium uptake in trk1 trk2 mutants of Saccharomyces cerevisiae correlates with a highly hyperpolarized membrane potential. J Biol Chem 273:14838–14844

    Article  PubMed  CAS  Google Scholar 

  • Mikkat C, Milkowski C, Hagemann M (2000) The gene sll0273 of the cyanobacterium Synechocystis sp. strain PCC6803 encodes a protein essential for growth at low Na+/K+ ratios. Plant Cell Environ 23:549–559

    Article  CAS  Google Scholar 

  • Munns R (2005) Genes and salt tolerance: bringing them together. New Phytologist 167:645–663

    Article  PubMed  CAS  Google Scholar 

  • Muramatsu Y, Harada A, Ohwaki Y, Kasahara Y, Takagi S, Fukuhara T (2002) Salt-tolerant ATPase activity in the plasma membrane of the marine angiosperm Zostera marina L. Plant Cell Physiol 43:1137–1145

    Article  PubMed  CAS  Google Scholar 

  • Niu X, Bressan RA, Hasegawa PM, Pardo JM (1995) Ion homeostasis in NaCl stress environments. Plant Physiol 109:735–742

    PubMed  CAS  Google Scholar 

  • Ottow EC, Polle A, Brosché M, Kangasjärvi J, Dibrov P, Zörb C, Teichmann T (2005) Molecular characterization of PeNhaD1: the first member of the NhaD Na+/H+ antiporter family of plant origin. Plant Mol Biol 58:75–88

    Article  PubMed  CAS  Google Scholar 

  • Pinner E, Kotler Y, Padan E, Schuldiner S (1993) Physiological role of NhaB, a specific Na+/H+ antiporter in Escherichia coli. J Biol Chem 268:1729–1734

    PubMed  CAS  Google Scholar 

  • Procaccini G, Mazzella L, Alberte RS, Les DH (1999) Chloroplast tRNALeu (UAA) intron sequences provide phylogenetic resolution of seagrass relationships. Aquat Bot 62:269–283

    Article  CAS  Google Scholar 

  • Qi Z, Spalding EP (2004) Protection of plasma membrane K+ transport by the salt overlay sensitive Na+-H+ antiporter during salinity stress. Plant Physiol 136:2548–2555

    Article  PubMed  CAS  Google Scholar 

  • Qiu QS, Bronwyn BJ, Vera-Estrella R, Zhu J-K, Schumaker KS (2003) Na+/H+ exchange activity in the plasma membrane of Arabidopsis. Plant Physiol 132:1041–1052

    Article  PubMed  CAS  Google Scholar 

  • Qiu QS, Guo Y, Dietrich MA, Schumaker KS, Zhu J-K (2002) Regulation of SOS1, a plasma membrane Na+/H+ exchanger in Arabidopsis thaliana, by SOS2 and SOS3. Proc Natl Acad Sci USA 99:8436–8441

    Article  PubMed  CAS  Google Scholar 

  • Quintero FJ, Ohta M, Shi H, Zhu J-K, Pardo JM (2002) Reconstitution in yeast of the Arabidopsis SOS signaling pathway for Na+ homeostasis. Proc Natl Acad Sci USA 99:9061–9066

    Article  PubMed  CAS  Google Scholar 

  • Rentsch D, Laloi M, Rouhara I, Schmelzer E, Delrot S, Frommer WB (1995) NTr1 encodes a high affinity oligopeptide transporter in Arabidopsis. FEBS Lett 370:264–268

    Article  PubMed  CAS  Google Scholar 

  • Retallack GJ, Germán-Heins J (1994) Evidence from paleosols for the geological antiquity of rain forest. Science 265:499–502

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez-Navarro A (2000) Potassium transport in fungi and plants. Biochem Biophys Acta 1469:1–30

    PubMed  Google Scholar 

  • Rodríguez-Navarro A, Ramos J (1984) Dual system for potassium transport in Saccharomyces cerevisiae. J Bacteriol 159:940–945

    PubMed  Google Scholar 

  • Rodríguez-Navarro A, Rubio F (2006) High-affinity potassium and sodium transport systems in plants. J Exp Bot 57:1149–1160

    Article  PubMed  Google Scholar 

  • Rubio F, Santa-María GE, Rodríguez-Navarro A (2000) Cloning of Arabidopsis and barley cDNAs encoding HAK potassium transporters in root and shoot cells. Physiol Plant 109:34–43

    Article  CAS  Google Scholar 

  • Santa-María GE, Rubio F, Dubcovsky J, Rodríguez-Navarro A (1997) The HAK1 gene of barley is a member of a large gene family and encodes a high-affinity potassium transporter. Plant Cell 9:2281–2289

    Article  PubMed  Google Scholar 

  • Selosse M-A, Le-Tacon F (1998) The land flora: a phototroph-fungus partnership? Trends Ecol Evol 13:15–20

    Article  Google Scholar 

  • Senn ME, Rubio F, Bañuelos MA, Rodríguez-Navarro A (2001) Comparative functional features of plant potassium HvHAK1 and HvHAK2 transporters. J Biol Chem 276:44563–44569

    Article  PubMed  CAS  Google Scholar 

  • Shi H, Ishitani M, Kim C, Zhu J-K (2000) The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter. Proc Natl Acad Sci USA 97:6896–6901

    Article  PubMed  CAS  Google Scholar 

  • Shi H, Lee B, Wu S-J, Zhu J-K (2003) Overexpression of a plasma membrane Na+/H+ antiporter gene improves salt tolerance in Arabidopsis thaliana. Nat Biotechnol 21:81–85

    Article  PubMed  CAS  Google Scholar 

  • Shi H, Quintero FJ, Pardo JM, Zhu J-K (2002) The putative plasma membrane Na+/H+ antiporter SOS1 controls long-distance Na+ transport in plants. Plant Cell 14:465–477

    Article  PubMed  CAS  Google Scholar 

  • Southworth TW, Guffanti AA, Moir A, Krulwich TA (2001) GerN, an endospore germination protein of Bacillus cereus, is an Na+/H+-K+ antiporter. J Bacteriol 183:5896–5903

    Article  PubMed  CAS  Google Scholar 

  • Tester M, Davenport R (2003) Na+ tolerance and Na+ transport in higher plants. Ann Bot 91:503–527

    Article  PubMed  CAS  Google Scholar 

  • Thackray PD, Behravan J, Southworth TW, Moir A (2001) GerN, an antiporter homologue important in germination of Bacillus cereus. J Bacteriol 183:476–482

    Article  PubMed  CAS  Google Scholar 

  • Utsugi J, Inaba K, Kuroda T, Tsuda M, Tsuchiya T (1998) Cloning and sequencing of a novel Na+/H+ antiporter gene from Pseudomonas aeruginosa. Biochem Biophys Acta 1398:330–334

    PubMed  CAS  Google Scholar 

  • Verkhovskaya ML, Barquera B, Verkhovsky MI, Wikström M (1998) Tha Na+ and K+ transport deficiency of an E. coli mutant lacking the NhaA and NhaB proteins is apparent and caused by impaired osmoregulation. FEBS Lett 439:271–274

    Article  PubMed  CAS  Google Scholar 

  • Waditee R, Hibino T, Tanaka Y, Nakamura T, Incharoensakdi A, Takabe T (2001) Halotolerant cyanobacterium Aphanothece halophytica contains and Na+/H+ antiporter, homologous to eukaryotic ones, with novel ion specificity affected by C-terminal tail. J Biol Chem 276:36931–36938

    Article  PubMed  CAS  Google Scholar 

  • Wu S-J, Ding L, Zhu J-K (1996) SOS1, a genetic locus essential for salt tolerance and potassium acquisition. Plant Cell 8:617–627

    Article  PubMed  CAS  Google Scholar 

  • Ye CJ, Zhao KF (2003) Osmotically active compounds and their location in the marine halophyte eelgrass. Biol Plant 46:137–140

    Article  CAS  Google Scholar 

  • Zhu J-K (2003) Regulation of ion homeostasis under salt stress. Curr Opin Plant Biol 6:441–445

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Javier Quintero (Universidad of Seville, Spain) for the gift of strain AXT3K, which expresses the AtSOS2 and AtSOS3 proteins, and the AtSOS1 clone, and also for informing us before publication of the mutation that activates the AtSOS1 transporter; E. Padan (Hebrew University, Jerusalem) for the gift of strain EP432; and Alonso Rodríguez-Navarro for advise and critical reading of the manuscript. We would also like to thank Marcel Velduizen for his technical assistance. Financial support for this work was provided by the Spanish Government, Research Directorate General, and by the ERDF program of the EU through a Ramón y Cajal Fellowship to (B.B) and grant no. AGL2004-05153.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Begoña Benito.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garciadeblás, B., Haro, R. & Benito, B. Cloning of two SOS1 transporters from the seagrass Cymodocea nodosa. SOS1 transporters from Cymodocea and Arabidopsis mediate potassium uptake in bacteria. Plant Mol Biol 63, 479–490 (2007). https://doi.org/10.1007/s11103-006-9102-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-006-9102-2

Keywords

Navigation