Skip to main content
Log in

Molecular cloning, expression, and cytokinin (6-benzylaminopurine) antagonist activity of peanut (Arachis hypogaea) lectin SL-I

  • Original Paper
  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Isolation and purification of a α-methyl-mannoside specific lectin (SL-I) of peanut was reported earlier [Singh and Das (1994) Glycoconj J 11:282–285]. Native SL-I is a glycoprotein having ∼31 kDa subunit molecular mass and forms dimer. The gene encoding this lectin is identified from a 6-day old peanut root cDNA library by anti-SL-I antibody and N-terminal amino acid sequence homology to the native lectin. Nucleotide sequence derived amino acid sequence of the re-SL-I shows amino acid sequence homology with the N-terminal and tryptic digests’ amino acid sequence of the native SL-I (nSL-I). Presence of a putative glycosylation (QNPS) site and a hydrophobic adenine-binding (VLVSYDANS) site is also identified in SL-I. Homology modeling of the lectin suggests it to be an archetype of legume lectins. It is expressed as a ~30 kDa apoprotein in E. coli and has the carbohydrate specificity and secondary structure identical to its natural counterpart. The lectin SL-I inhibits cytokinin 6-benzylaminopurine (BA)-induced “delayed leaf senescence” and “cotyledon expansion”. Equilibrium dialysis revealed a single high-affinity binding site for adenine (7.6 × 10−6 M) and BA (1.09 × 10−5 M) in the SL-I dimer and thus suggesting that the cytokinin antagonist effect of SL-I is mediated by the direct interaction of SL-I with BA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

PBS:

phosphate-buffered saline

nSL-I/SL-I:

native peanut stem lectin

re-SL-I:

recombinant SL-I

Con A:

Concanavalin A

LBL:

lima bean lectin

WBA I and WBA II:

winged bean basic- and acidic- agglutinin respectively

PHA-E:

Phaseolus vulgaris erythroagglutinin

PAL:

Pterocarpus angolensis man/glc specific seed lectin

SBA:

soybean lectin

ANS:

1,8-anilino-1-naphthalenesulfonic acid

BA:

6-benzylaminopurine

PMSF:

phenylmethylsulfonylfluoride

References

  • Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Assaying the quality of cDNA libraries. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  • Bewly JD, Black M (1985) Seeds physiology of development and germination. Plenum Press, New York and London

    Google Scholar 

  • Bogoeva VP, Radeva MA, Atanasova LY, Stoitsova SR, Boteva RN (2004) Fluorescence analysis of hormone binding activities of wheat germ agglutinin. Biochim Biophys Acta 1698:213–218

    PubMed  CAS  Google Scholar 

  • Bourne Y, Abergel C, Cambillau C, Frey M, Rouge P, Fontecilla-Camps JC (1990) X-ray crystal structure determination and refinement at 1.9 Å resolution of isolectin I from the seeds of Lathyrus ochrus. J Mol Biol 214:571–584

    Article  PubMed  CAS  Google Scholar 

  • Chothia C, Lesk AM (1986) The relation between the divergence of sequence and structure in proteins. Embo J 5:823–826

    PubMed  CAS  Google Scholar 

  • DuBois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Crystal structure of arcelin-5, a lectin-like defense protein from Phaseolus vulgaris. Anal Chem 28:350–356

    Article  CAS  Google Scholar 

  • Edelman GM, Cunningham BA, Reeke GN Jr, Becker JW, Waxdal MJ, Wang JL (1972) Crystal structure of peanut lectin, a protein with an unusual quaternary structure. Proc Natl Acad Sci USA 69:2580–2584

    Article  PubMed  CAS  Google Scholar 

  • Einspahr H, Parks EH, Suguna K, Subramanian E, Suddath FL (1986) The crystal structure of pea lectin at 3.0 Å resolution. J Biol Chem 261:16518–16527

    PubMed  CAS  Google Scholar 

  • Etzler ME (1985) Plant lectins: Molecular and biological aspects. Ann Rev Plant Physiol 36:209–234

    CAS  Google Scholar 

  • Farmer TB, Caprioli RM (1998) Determination of protein–protein interactions by Matrix-assisted Laser Desorption/Ionization Mass Spectrometry. J Mass Spectrom 33:697–704

    Article  PubMed  CAS  Google Scholar 

  • Green JF, Muir RM (1978) The effect of potassium on cotyledon expansion induced by cytokinins. Physiol Plant 43:213–216

    Article  CAS  Google Scholar 

  • Gegg CV, Roberts DD, Segel IH, Etzler ME (1992) Characterization of the adenine binding sites of two Dolichos biflorus lectins. Biochemistry 31:6938–6942

    Article  PubMed  CAS  Google Scholar 

  • Gegg CV, Etzler ME (1994) Photoaffinity labeling of the adenine binding sites of two Dolichos biflorus lectins. J Biol Chem 8:5687–5692

    Google Scholar 

  • Ha CE, Petersen CE, Park DS, Harohalli K, Bhagavan NV (2000) Investigations of the effects of ethanol on warfarin binding to human serum albumin. J Biomed Sci 7:114–121

    Article  PubMed  CAS  Google Scholar 

  • Hagen FS, Gray CL, Kuijper JL (1988) Assaying the quality of cDNA libraries. Biotechniques 6:340–345

    PubMed  CAS  Google Scholar 

  • Hamelryck TW, Loris R, Bouckaert J, Dao-Thi MH, Strecker G, Imberty A, Fernandez E, Wyns L, Etzler ME (1999) Carbohydrate binding, quaternary structure and a novel hydrophobic binding site in two legume lectin oligomers from Dolichos biflorus. J Mol Biol 4:1161–1177

    Article  Google Scholar 

  • Inskeep WP, Bloom PR (1985) Extinction coefficients of Chlorophyll a and b in N,N-dimethylformamide and 80% acetone. Plant Physiol 77:483–485

    Article  PubMed  CAS  Google Scholar 

  • Kalsi G, Das HR, Babu CR, Das RH (1992) Isolation and characterization of lectin from peanut roots. Biochim Biophys Acta 1117:114–119

    PubMed  CAS  Google Scholar 

  • Kalsi G, Das HR, Babu CR (1993) Further characterization of glucose-specific peanut root lectin (PRA II). Indian J Biochem Biophys 30:400–404

    CAS  Google Scholar 

  • Kishinevsky BD, Law IJ, Strijdom BW (1988) Detection of lectins in nodulated peanut and soyabean plants. Planta 176:10–18

    Article  CAS  Google Scholar 

  • Kozak M (1983) Comparison of initiation of protein synthesis in procaryotes, eucaryotes, and organelles. Microbiol Rev 47:1–45

    PubMed  CAS  Google Scholar 

  • Kyte J, Doolittle RF (1982) A simple method for displaying the hydropathic character of a protein. J Mol Biol 157:105–132

    Article  PubMed  CAS  Google Scholar 

  • Letham DS (1971) Regulators of cell division in plant tissues. XII. A cytokinin bioassay using excised radish cotyledons. Physiol Plant 25:391–396

    Article  CAS  Google Scholar 

  • Longo G, Pedretti M, Rossi G, Longo C (1979) Effect of benzyladenine on the development of plastids and microbodies in excised watermelon cotyledons. Planta 145:209–217

    Article  CAS  Google Scholar 

  • Loris R, Hamelryck T, Bouckaert J, Wyns L (1998) Legume lectin structure. Biochim Biophys Acta 1:9–36

    Google Scholar 

  • Loris R, Imberty A, Beeckmans S, Van Driessche E, Read JS, Bouckaert J et al. (2003) Crystal structure of Pterocarpus angolensis lectin in complex with glucose, sucrose, and turanose. J Biol Chem 278:16297–16303

    Article  PubMed  CAS  Google Scholar 

  • Loris R, Van Walle I, De Greve H, Beeckmans S, Deboeck F, Wyns L, Bouckaert J (2004) Structural basis of oligomannose recognition by the Pterocarpus angolensis seed lectin. J␣Mol Biol 335:1227–1240

  • Loris R, Steyaert J, Maes D, Lisgarten J, Pickersgill R, Wyns L (1993) Crystal structure determination and refinement at 2.3-Å resolution of the lentil lectin. Biochemistry 32:8772–8781

    Article  PubMed  CAS  Google Scholar 

  • Lotan R, Skutelsky E, Danon D, Sharon N (1975) The purification, composition, and specificity of the anti-T lectin from peanut (Arachis hypogaea). J Biol Chem 250:8518–8523

    PubMed  CAS  Google Scholar 

  • Maliarik MJ, Goldstein IJ (1988) Photoaffinity labeling of the adenine binding site of the lectins from lima bean, Phaseolus lunatus, and the kidney bean Phaseolus vulgaris. J Biol Chem 263:11274–11279

    PubMed  CAS  Google Scholar 

  • Maliarik M, Plessas NR, Goldstein IJ, Musci G, Berliner LJ (1989) ESR and fluorescence studies on the adenine binding site of lectins using a spin-labeled analogue. Biochemistry 28:912–917

    Article  PubMed  CAS  Google Scholar 

  • Matsugi J, Murao K (2001) Study on construction of a cDNA library corresponding to an amino acid-specific tRNA and influence of the modified nucleotide upon nucleotide misincorporations in reverse transcription. J Biochim Biophys Acta 1521:81–88

    CAS  Google Scholar 

  • Moran R, Porath D (1980) Chlorophyll determination in intact tissues using N,N-dimethylformamide. Plant Physiol 65:478–479

    PubMed  CAS  Google Scholar 

  • Orr A, Ivanova VS, Bonner WM 1995 ‘Water-bug’ dialysis technique. Biotechniques 19/2:204

    Google Scholar 

  • Richmond AE, Lang A (1957) Effect of kinetin on protein content and survival of detached Xanthium leaves. Science 125:650–651

    Article  CAS  Google Scholar 

  • Roberts DD, Goldstein IJ (1982) Hydrophobic binding properties of the lectin from lima beans (Phaseolus lunatus). J Biol Chem 257:11274–11277

    PubMed  CAS  Google Scholar 

  • Roberts DD, Goldstein IJ (1983) Adenine binding sites of the lectin from lima beans (Phaseolus lunatus). J Biol Chem 22:13820–13824

    Google Scholar 

  • Rost B (1996) PHD: predicting one-dimensional protein structure by profile-based neural networks. Methods Enzymol 266:525–539

    Article  PubMed  CAS  Google Scholar 

  • Rozwarski DA, Swami BM, Brewer CF, Sacchettini JC (1998) Crystal structure of the lectin from Dioclea grandiflora complexed with core trimannoside of asparagine-linked carbohydrates. J Biol Chem 273:32818–32825

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor, New York, pp 18–24

    Google Scholar 

  • Sanz-Aparicio J, Hermoso J, Grangeiro TB, Calvete JJ, Cavada BS (1997) The crystal structure of Canavalia brasiliensis lectin suggests a correlation between its quaternary conformation and its distinct biological properties from Concanavalin A. FEBS Lett 405:114–118

    Article  PubMed  CAS  Google Scholar 

  • Schwede T, Kopp J, Guex N, Peitsch MC (2003) SWISS MODEL—an automated protein homology-modeling server. Nucleic Acids Res 31:3381–3385

    Article  PubMed  CAS  Google Scholar 

  • Shanker S, Das RH (2001) Identification of a cDNA clone encoding for a galactose-binding lectin from peanut (Arachis hypogaea) seedling roots. Biochim Biophys Acta 1568:105–110

    PubMed  CAS  Google Scholar 

  • Sharon N, Lis H (1986) Lectin biochemistry. New way of protein maturation. Nature 323:203–204

    Article  PubMed  CAS  Google Scholar 

  • Singh R, Das HR (1994) Purification of lectins from the stems of peanut plants. Glycoconj J 11:282–285

    Article  PubMed  CAS  Google Scholar 

  • Singh R, Gautam H, Jayaraman V, Nair G, Das HR (1997) Vegetative tissue lectins of peanut (A. hypogaea). Indian J Biochem Biophys 34:72–75

    PubMed  CAS  Google Scholar 

  • Srinivas VR, Acharya S, Rawat S, Sharma V, Surolia A (2000) The primary structure of the acidic lectin from winged bean (Psophocarpus tetragonolobus): insights in carbohydrate recognition, adenine binding and quaternary association. FEBS Lett 474:76–82

    Article  PubMed  CAS  Google Scholar 

  • Stoitsova SR, Boteva RN, Doyle RJ (2003) Binding of hydrophobic ligands by Pseudomonas aeruginosa PA-I lectin. Biochim Biophys Acta 1619:213–219

    PubMed  CAS  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    PubMed  CAS  Google Scholar 

  • Wah DA, Romero A, Gallego del Sol F, Cavada BS, Ramos MV, Grangeiro TB, Sampaio AH, Calvete JJ (2001) Crystal structure of native and Cd/Cd-substituted Dioclea guianensis seed lectin. A novel manganese-binding site and structural basis of dimer–tetramer association. J Mol Biol 310:885–894

    Article  PubMed  CAS  Google Scholar 

  • Zacharius RM, Zell TE, Morrison JH, Woodlock JJ (1969) Glycoprotein staining following electrophoresis on acrylamide gels. Anal Biochem 1:148–152

    Article  Google Scholar 

Download references

Acknowledgements

Authors gratefully acknowledge Dr. Souvik Maiti for his guidance in fluorescence studies. Authors also acknowledge the Director of IGIB for providing facilities to carry out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rakha H. Das.

Additional information

The nucleotide sequence data reported here are available in the DDBJ/EMBL/GenBank databases under the Accession No. AJ585523

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pathak, M., Singh, B., Sharma, A. et al. Molecular cloning, expression, and cytokinin (6-benzylaminopurine) antagonist activity of peanut (Arachis hypogaea) lectin SL-I. Plant Mol Biol 62, 529–545 (2006). https://doi.org/10.1007/s11103-006-9038-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-006-9038-6

Keywords

Navigation