Skip to main content
Log in

Computational Prediction and Experimental Verification of HVA1-like Abscisic Acid Responsive Promoters in Rice (Oryza sativa)

  • Original Paper
  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Abscisic acid (ABA) is one of the central plant hormones, responsible for controlling both maturation and germination in seeds, as well as mediating adaptive responses to desiccation, injury, and pathogen infection in vegetative tissues. Thorough analyses of two barley genes, HVA1 and HVA22, indicate that their response to ABA relies on the interaction of two cis-acting elements in their promoters, an ABA response element (ABRE) and a coupling element (CE). Together, they form an ABA response promoter complex (ABRC). Comparison of promoters of barley HVA1 and it rice orthologue indicates that the structures and sequences of their ABRCs are highly similar. Prediction of ABA responsive genes in the rice genome is then tractable to a bioinformatics approach based on the structures of the well-defined barley ABRCs. Here we describe a model developed based on the consensus, inter-element spacing and orientations of experimentally determined ABREs and CEs. Our search of the rice promoter database for promoters that fit the model has generated a partial list of genes in rice that have a high likelihood of being involved in the ABA signaling network. The ABA inducibility of some of the rice genes identified was validated with quantitative reverse transcription PCR (QPCR). By limiting our input data to known enhancer modules and experimentally derived rules, we have generated a high confidence subset of ABA-regulated genes. The results suggest that the pathways by which cereals respond to biotic and abiotic stresses overlap significantly, and that regulation is not confined to the level transcription. The large fraction of putative regulatory genes carrying HVA1-like enhancer modules in their promoters suggests the ABA signal enters at multiple points into a complex regulatory network that remains largely unmapped.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alvarado MC, Zsigmond LM, Kovacs I, Cseplo A, Koncz C, Szabados LM (2004) Gene trapping with firefly luciferase in Arabidopsis. tagging of stress-responsive genes. Plant Physiol 134:18–27

    Article  PubMed  CAS  Google Scholar 

  • Aneeta, Sanan-Mishra N, Tuteja N, Kumar Sopory S (2002) Salinity- and ABA-induced up-regulation and light-mediated modulation of mRNA encoding glycine-rich RNA-binding protein from Sorghum bicolor. Biochem Biophys Res Commun 296:1063–1068

    Article  PubMed  CAS  Google Scholar 

  • Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G (2000) Gene ontology: tool for the unification of biology. Nat Genet 25:25–29

    Article  PubMed  CAS  Google Scholar 

  • Bailey TL, Elkan C (1994) Fitting a mixture model by expectation maximization to discover motifs in biopolymers Proceedings of the Second International Conference on Intelligent Systems for Molecular Biology. AAAI Press, Menlo Park, CA, pp 28–36

    Google Scholar 

  • Blackwood EM, Kadonaga JT (1998) Going the distance: a current view of enhancer action. Science 281:60–63

    Article  PubMed  CAS  Google Scholar 

  • Carles C, Bies-Etheve N, Aspart L, Leon-Kloosterziel KM, Koornneef M, Echeverria M, Delseny M (2002) Regulation of Arabidopsis thaliana Em genes: role of ABI5. Plant J 30:373–383

    Article  PubMed  CAS  Google Scholar 

  • Casaretto J, Ho T-hD (2003) The transcription factors HvABI5 and HvVP1 are required for the abscisic acid induction of gene expression in barley aleurone cells. Plant Cell 15:271–284

    Article  PubMed  CAS  Google Scholar 

  • Casaretto JA, Ho T-hD (2005) Transcriptional regulation by abscisic acid in barley (Hordeum vulgare L.) seeds involves autoregulation of the transcription factor HvABI5. Plant Mol Biol 57:21–34

    Article  PubMed  CAS  Google Scholar 

  • Chinnusamy V, Schumaker K, Zhu JK (2004) Molecular genetic perspectives on cross-talk and specificity in abiotic stress signalling in plants. J Exp Bot 55:225–236

    Article  PubMed  CAS  Google Scholar 

  • Cutler AJ, Krochko JE (1999) Formation and breakdown of ABA. Trends Plant Sci 4:472–478

    Article  PubMed  Google Scholar 

  • Dubcovsky J, Ramakrishna W, SanMiguel PJ, Busso CS, Yan L, Shiloff BA, Bennetzen JL (2001) Comparative sequence analysis of colinear barley and rice bacterial artificial chromosomes. Plant Physiol 125:1342–1353

    Article  PubMed  CAS  Google Scholar 

  • Dunford RP, Kurata N, Laurie DA, Money TA, Minobe Y, Moore G (1995) Conservation of fine-scale DNA marker order in the genomes of rice and the Triticeae. Nucleic Acids Res 23:2724–2728

    PubMed  CAS  Google Scholar 

  • Enyedi AJ, Raskin I (1993) Induction of UDP-glucose:salicylic acid glucosyltransferase activity in tobacco mosaic virus-inoculated tobacco (Nicotiana tabacum) leaves. Plant Physiol 101:1375–1380

    PubMed  CAS  Google Scholar 

  • Fan LM, Zhao Z, Assmann SM (2004) Guard cells: a dynamic signaling model. Curr Opin Plant Biol 7:537–546

    Article  PubMed  CAS  Google Scholar 

  • Finkelstein RR, Gampala SS, Rock CD (2002) Abscisic acid signaling in seeds and seedlings. Plant Cell 14: S15–S45

    PubMed  CAS  Google Scholar 

  • Finkelstein RR, Rock CD (2002) Abscisic acid biosynthesis and response. The Arabidopsis Book. In: Somerville CR, Meyerowitz EM (eds) American Society of Plant Biologists, pp 1–48

  • Giraudat J, Parcy F, Bertauche N, Gosti F, Leung J, Morris PC, Bouvier-Durand M, Vartanian N (1994) Current advances in abscisic acid action and signalling. Plant Mol Biol 26:1557–1577

    Article  PubMed  CAS  Google Scholar 

  • Groth D, Lehrach H, Hennig S (2004) GOblet: a platform for gene ontology annotation of anonymous sequence data. Nucl Acids Res 32: W313–W317

    PubMed  CAS  Google Scholar 

  • Hare PD, Seo HS, Yang JY, Chua NH (2003) Modulation of sensitivity and selectivity in plant signaling by proteasomal destabilization. Curr Opin Plant Biol 6:453–462

    Article  PubMed  CAS  Google Scholar 

  • Hattori T, Totsuka M, Hobo T, Kagaya Y, Yamamoto-Toyoda A (2002) Experimentally determined sequence requirement of ACGT-containing abscisic acid response element. Plant Cell Physiol 43:136–140

    Article  PubMed  CAS  Google Scholar 

  • Himmelbach A, Yang Y, Grill E (2003) Relay and control of abscisic acid signaling. Curr Opin Plant Biol 6:470–479

    Article  PubMed  CAS  Google Scholar 

  • Hirose T, Sugita M, Sugiura M (1993) cDNA structure, expression and nucleic acid-binding properties of three RNA-binding proteins in tobacco: occurrence of tissue-specific alternative splicing. Nucleic Acids Res 21:3981–3987

    PubMed  CAS  Google Scholar 

  • Hobo T, Asada M, Kowyama Y, Hattori T (1999) ACGT-containing abscisic acid response element (ABRE) and coupling element 3 (CE3) are functionally equivalent. Plant J 19:679–689

    Article  PubMed  CAS  Google Scholar 

  • Hobo T, Kowyama Y, Hattori T (1999) A bZIP factor, TRAB1, interacts with VP1 and mediates abscisic acid-induced transcription. PNAS 96:15348–15353

    Article  PubMed  CAS  ADS  Google Scholar 

  • Ingram J, Bartels D (1996) The molecular basis of dehydration tolerance in plants. Annu Rev Plant Physiol Plant Mol Biolgy 47:377–403

    Article  CAS  Google Scholar 

  • Jones AL, Quimby BB, Hood JK, Ferrigno P, Keshava PH, Silver PA, Corbett AH (2000) SAC3 may link nuclear protein export to cell cycle progression. PNAS 97:3224–3229

    Article  PubMed  CAS  ADS  Google Scholar 

  • Joshee N, Kisaka H, Kitagawa Y (1998) Isolation and characterization of a water stress-specific genomic gene, pwsi18, from rice. Plant Cell Physiol 39:64–72

    PubMed  CAS  Google Scholar 

  • Kikuchi S, Satoh K, Nagata T, Kawagashira N, Doi K, Kishimoto N, Yazaki J, Ishikawa M, Yamada H, Ooka H, Hotta I, Kojima K, Namiki T, Ohneda E, Yahagi W, Suzuki K, Li CJ, Ohtsuki K, Shishiki T, Otomo Y, Murakami K, Iida Y, Sugano S, Fujimura T, Suzuki Y, Tsunoda Y, Kurosaki T, Kodama T, Masuda H, Kobayashi M, Xie Q, Lu M, Narikawa R, Sugiyama A, Mizuno K, Yokomizo S, Niikura J, Ikeda R, Ishibiki J, Kawamata M, Yoshimura A, Miura J, Kusumegi T, Oka M, Ryu R, Ueda M, Matsubara K, Kawai J, Carninci P, Adachi J, Aizawa K, Arakawa T, Fukuda S, Hara A, Hashidume W, Hayatsu N, Imotani K, Ishii Y, Itoh M, Kagawa I, Kondo S, Konno H, Miyazaki A, Osato N, Ota Y, Saito R, Sasaki D, Sato K, Shibata K, Shinagawa A, Shiraki T, Yoshino M, Hayashizaki Y (2003) Collection, mapping, and annotation of over 28,000 cDNA clones from japonica rice. Science 301:376–379

    Article  PubMed  ADS  Google Scholar 

  • Kong J, Gong JM, Zhang ZG, Zhang JS, Chen SY (2003) A new AOX homologous gene OsIM1 from rice (Oryza sativa L.) with an alternative splicing mechanism under salt stress. Theor Appl Genet 107:326–331

    Article  PubMed  CAS  Google Scholar 

  • Koornneef M, Reuling G, Karssen CM (1984) The Isolation and characterization of abscisic-acid insensitive mutants of Arabidopsis thaliana. Physiol Plantarum 61:377–383

    Article  CAS  Google Scholar 

  • Kuhn JM, Schroeder JI (2003) Impacts of altered RNA metabolism on abscisic acid signaling. Curr Opin Plant Biol 6:463–469

    Article  PubMed  CAS  Google Scholar 

  • Kuwabara C, Arakawa K, Yoshida S (1999) Abscisic acid-induced secretory proteins in suspension-cultured cells of winter wheat. Plant Cell Physiol 40:184–191

    PubMed  CAS  Google Scholar 

  • Kuwabara C, Takezawa D, Shimada T, Hamada T, Fujikawa S, Arakawa K (2002) Abscisic acid- and cold-induced thaumatin-like protein in winter wheat has an antifungal activity against snow mould, Microdochium nivale. Physiol Plantarum 115:101–110

    Article  PubMed  CAS  Google Scholar 

  • Leung J, Giraudat J (1998) Abscisic acid signal transduction. Annu Rev Plant Physiol Plant Mol Biol 49:199–222

    Article  PubMed  CAS  Google Scholar 

  • Lovegrove A, Hooley R (2000) Gibberellin and abscisic acid signalling in aleurone. Trends Plant Sci 5:102–110

    Article  PubMed  CAS  Google Scholar 

  • Mahalingam R, Gomez-Buitrago A, Eckardt N, Shah N, Guevara-Garcia A, Day P, Raina R, Fedoroff NV (2003) Characterizing the stress/defense transcriptome of Arabidopsis. Genome Biol 4: R20

    Article  PubMed  Google Scholar 

  • Mauch-Mani B, Mauch F (2005) The role of abscisic acid in plant-pathogen interactions. Curr Opin Plant Biol 8:409–414

    Article  PubMed  CAS  Google Scholar 

  • Moons A, De Keyser A, Van Montagu M (1997) A group 3 LEA cDNA of rice, responsive to abscisic acid, but not to jasmonic acid, shows variety-specific differences in salt stress response. Gene 191:197–204

    Article  PubMed  CAS  Google Scholar 

  • Morris PC, Kumar A, Bowles DJ, Cuming AC (1990) Osmotic stress and abscisic acid induce expression of the wheat Em genes. Eur J Biochem 190:625–630

    Article  PubMed  CAS  Google Scholar 

  • Narusaka Y, Nakashima K, Shinwari ZK, Sakuma Y, Furihata T, Abe H, Narusaka M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Interaction between two cis-acting elements, ABRE and DRE, in ABA-dependent expression of Arabidopsis rd29A gene in response to dehydration and high-salinity stresses. Plant J: For Cell Mol Biol 34:137–148

    CAS  Google Scholar 

  • Narusaka Y, Narusaka M, Seki M, Umezawa T, Ishida J, Nakajima M, Enju A, Shinozaki K (2004) Crosstalk in the responses to abiotic and biotic stresses in Arabidopsis: analysis of gene expression in cytochrome P450 gene superfamily by cDNA microarray. Plant Mol Biol 55:327–342

    Article  PubMed  CAS  Google Scholar 

  • Nicolas C, Rodriguez D, Poulsen F, Eriksen EN, Nicolas G (1997) The expression of an abscisic acid-responsive glycine-rich protein coincides with the level of seed dormancy in Fagus sylvatica. Plant Cell Physiol 38:1303–1310

    PubMed  CAS  Google Scholar 

  • Niu X, Helentjaris T, Bate NJ (2002) Maize ABI4 binds Coupling Element1 in abscisic acid and sugar response genes. Plant Cell 14:2565–2575

    Article  PubMed  CAS  Google Scholar 

  • Pearson WR, Lipman DJ (1988) Improved tools for biological sequence comparison. PNAS 85:2444–2448

    Article  PubMed  CAS  ADS  Google Scholar 

  • Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucl Acids Res 29:e45-

    Article  PubMed  CAS  Google Scholar 

  • Pieterse CM, Van Loon L (2004) NPR1: the spider in the web of induced resistance signaling pathways. Curr Opin Plant Biol 7:456–464

    Article  PubMed  CAS  Google Scholar 

  • Porter T, Coon M (1991) Cytochrome P-450. Multiplicity of isoforms, substrates, and catalytic and regulatory mechanisms. J Biol Chem 266:13469–13472

    PubMed  CAS  Google Scholar 

  • Rabbani MA, Maruyama K, Abe H, Khan MA, Katsura K, Ito Y, Yoshiwara K, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Monitoring expression profiles of rice genes under cold, drought, and high-salinity stresses and abscisic acid application using cDNA microarray and RNA gel-blot analyses. Plant Physiol 133:1755–1767

    Article  PubMed  CAS  Google Scholar 

  • Razem FA, El-Kereamy A, Abrams SR, Hill RD (2006) The RNA-binding protein FCA is an abscisic acid receptor. Nature 439:290–294

    Article  PubMed  CAS  ADS  Google Scholar 

  • Ritchie SM, Swanson SJ, Gilroy S (2002) From common signalling components to cell specific responses: insights from the cereal aleurone. Physiol Plant 115:342–351

    Article  PubMed  CAS  Google Scholar 

  • Rock CD (2000) Pathways to abscisic acid-regulated gene expression. New Phytol 148:357–396

    Article  CAS  Google Scholar 

  • Schroeder JI, Allen GJ, Hugouvieux V, Kwak JM, Waner D (2001) Guard cell signal transduction. Annu Rev Plant Physiol Plant Mol Biol 52:627–658

    Article  PubMed  CAS  Google Scholar 

  • Shen Q, Ho TH (1995) Functional dissection of an abscisic acid (ABA)-inducible gene reveals two independent ABA-responsive complexes each containing a G-box and a novel cis-acting element. Plant Cell 7:295–307

    Article  PubMed  CAS  Google Scholar 

  • Shen Q, Uknes SJ, Ho THD (1993) Hormone response complex of a novel abscisic acid and cycloheximide inducible barley gene. J Biol Chem 268:23652–23660

    PubMed  CAS  Google Scholar 

  • Shen Q, Zhang P, Ho T (1996) Modular nature of abscisic acid (ABA) response complexes: Composite promoter units that are necessary and sufficient for ABA induction of gene expression in barley. Plant Cell 8:1107–1119

    Article  PubMed  CAS  Google Scholar 

  • Shen QJ, Casaretto JA, Zhang P, Ho T-HD (2004) Functional definition of ABA-response complexes: the promoter units necessary and sufficient for ABA induction of gene expression in barley (Hordeum vulgare L.). Plant Mol Biol 54:111–124

    Article  PubMed  CAS  Google Scholar 

  • Simpson SD, Nakashima K, Narusaka Y, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Two different novel cis-acting elements of erd1, a clpA homologous Arabidopsis gene function in induction by dehydration stress and dark-induced senescence. Plant J 33:259–270

    Article  PubMed  CAS  Google Scholar 

  • Stintzi A, Browse J (2000) The Arabidopsis male-sterile mutant, opr3, lacks the 12-oxophytodienoic acid reductase required for jasmonate synthesis. PNAS 97:10625–10630

    Article  PubMed  CAS  ADS  Google Scholar 

  • Stintzi A, Heitz T, Prasad V, Wiedemann-Merdinoglu S, Kauffmann S, Geoffroy P, Legrand M, Fritig B (1993) Plant ‘pathogenesis-related’ proteins and their role in defense against pathogens. Biochimie 75:687–706

    Article  PubMed  CAS  Google Scholar 

  • Su J, Shen Q, David Ho TH, Wu R (1998) Dehydration-stress-regulated transgene expression in stably transformed rice plants. Plant Physiol 117:913–922

    Article  PubMed  CAS  Google Scholar 

  • Takahashi S, Seki M, Ishida J, Satou M, Sakurai T, Narusaka M, Kamiya A, Nakajima M, Enju A, Akiyama K, Yamaguchi-Shinozaki K, Shinozaki K (2004) Monitoring the expression profiles of genes induced by hyperosmotic, high salinity, and oxidative stress and abscisic acid treatment in Arabidopsis cell culture using a full-length cDNA microarray. Plant Mol Biol 56:29–55

    Article  PubMed  CAS  Google Scholar 

  • Vick BA, Zimmerman DC (1986) Characterization of 12-oxo-phytodienoic acid reductase in corn. Plant Physiol 80:202–205

    Article  PubMed  CAS  Google Scholar 

  • Xie Z, Ruas P, Shen QS (2005) The signaling networks of the phytohormone abscisic acid. In: Litwack G (eds) Vitamins and hormones. Elsevier, New York, pp 235–269

    Google Scholar 

  • Xu Q, Belcastro MP, Villa ST, Dinkins RD, Clarke SG, Downie AB (2004) A second protein L-isoaspartyl methyltransferase gene in Arabidopsis produces two transcripts whose products are sequestered in the nucleus. Plant Physiol 136:2652–2664

    Article  PubMed  CAS  Google Scholar 

  • Xue G-P, Loveridge CW (2004) HvDRF1 is involved in abscisic acid-mediated gene regulation in barley and produces two forms of AP2 transcriptional activators, interacting preferably with a CT-rich element. Plant J 37:326–339

    Article  PubMed  CAS  Google Scholar 

  • Yadav V, Mallappa C, Gangappa SN, Bhatia S, Chattopadhyay S (2005) A basic helix-loop-helix transcription factor in Arabidopsis, MYC2, acts as a repressor of blue light-mediated photomorphogenic growth. Plant Cell: tpc.105.032060

  • Yamaguchi-Shinozaki K, Mundy J, Chua NH (1990) Four tightly linked rab genes are differentially expressed in rice. Plant Mol Biol 14:29–39

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (1994) A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. Plant Cell 6:251–264

    Article  PubMed  CAS  Google Scholar 

  • Yazaki J, Shimatani Z, Hashimoto A, Nagata Y, Fujii F, Kojima K, Suzuki K, Taya T, Tonouchi M, Nelson C, Nakagawa A, Otomo Y, Murakami K, Matsubara K, Kawai J, Carninci P, Hayashizaki Y, Kikuchi S (2004) Transcriptional profiling of genes responsive to abscisic acid and gibberellin in rice: phenotyping and comparative analysis between rice and Arabidopsis. Physiol Genomics 17:87–100

    Article  PubMed  CAS  Google Scholar 

  • Yuan Q, Ouyang S, Wang A, Zhu W, Maiti R, Lin H, Hamilton J, Haas B, Sultana R, Cheung F, Wortman J, Buell CR (2005) The Institute for Genomic Research Osa1 Rice Genome Annotation Database. Plant Physiol 138:18–26

    Article  PubMed  CAS  Google Scholar 

  • Zhang W, Ruan J, Ho T-hD, You Y, Yu T, Quatrano RS (2005) cis-Regulatory element based targeted gene finding: genome-wide identification of abscisic acid- and abiotic stress-responsive genes in Arabidopsis thaliana. Bioinformatics 21:3074–3081

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Wang L (2005) The WRKY transcription factor superfamily: its origin in eukaryotes and expansion in plants. BMC Evol Biol 5:1

    Article  PubMed  CAS  Google Scholar 

  • Zhang Z-L, Xie Z, Zou X, Casaretto J, Ho T-hD, Shen QJ (2004) A rice WRKY gene encodes a transcriptional repressor of the gibberellin signaling pathway in aleurone cells. Plant Physiol. 134:1500–1513

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are in debt to Dr. Robin Buell at the Institute of Genome Research for making the annotated rice data available to us. We would also like to thank Drs. Helen Wing, Eduardo Robleto and Brian Hedlund for reviewing this manuscript and Kate Shen for her technical advice on quantitative RT-PCR. We also appreciate the advice of Drs. Chih-Hsiang Ho and Roy Ogawa on statistical analyses. This work is supported by a NIH BRIN (P20RR016464) seed grant to Q.J. Shen, a NIH INBRE Grant (P20RR016463) to the Bioinformatics Core at UNLV, a UNLV start-up grant to Dr. Ronald Yasbin, and a UNLV Planning Initiative Award to Q.J. Shen, R. Ogawa and C. H. Ho.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingxi J. Shen.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ross, C., Shen, Q.J. Computational Prediction and Experimental Verification of HVA1-like Abscisic Acid Responsive Promoters in Rice (Oryza sativa). Plant Mol Biol 62, 233–246 (2006). https://doi.org/10.1007/s11103-006-9017-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-006-9017-y

Keywords

Navigation