Skip to main content
Log in

A gymnosperm ABI3 gene functions in a severe abscisic acid-insensitive mutant of Arabidopsis (abi3-6) to restore the wild-type phenotype and demonstrates a strong synergistic effect with sugar in the inhibition of post-germinative growth

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

The CnABI3 gene of yellow-cedar is an orthologue of the ABI3/VP1 gene of angiosperms; it shares many common characteristics with other ABI3/VP1 genes, yet has unique characteristics as well. We examined whether this gymnosperm transcription factor can functionally complement an angiosperm species with a defective ABI3 gene. A severe Arabidopsis abi3 null mutant abi3-6 was stably transformed with the CnABI3 gene coding-region driven by a modified CaMV 35S promoter. Several of the visible mutant phenotypes (e.g., production of green seeds due to a lack of chlorophyll breakdown) were fully restored to those of the wild-type and the transformed seeds acquired desiccation tolerance. The functional complementation of the mutant also extended to the accumulation of several seed proteins (including seed-storage-proteins, α-tonoplast intrinsic protein, dehydrin-related polypeptides and oleosin), which were restored to wild-type levels. However, not all phenotypes were fully restored; sensitivities of transgenic seeds to exogenous ABA (as far as germination is concerned) were lower than that of the wild-type seeds, and flowering times were intermediate of those characteristic of wild-type and abi3-6 plants. A novel function for CnABI3, potentially related to a direct or indirect role in ER homeostasis was revealed. Two proteins with a molecular chaperone function in the ER (BiP and protein disulphide isomerase) were elevated in mutant seeds (indicative of ER stress); expression of the CnABI3 gene decreased the accumulation of these proteins to levels characteristic of the wild-type. These studies reveal the degree of conservation of ABI3 functions between gymnosperms and angiosperms as well as some novel functions of ABI3-related genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • A. Arroyo F. Bossi R.R. Finkelstein P. Leon (2003) ArticleTitleThree genes that affect sugar sensing (abscisic acid insensitive 4, abscisic acid insensitive 5, and constitutive triple response 1) are differentially regulated by glucose in Arabidopsis Plant Physiol. 133 231–242

    Google Scholar 

  • S.L. Bates C.G. Lait J.H. Borden A.R. Kermode (2001) ArticleTitleEffect of feeding by the western conifer seed bug, Leptoglossus occidentalis, on the major storage reserves of developing seeds and on seedling vigor of Douglas-fir Tree Physiol. 21 481–487

    Google Scholar 

  • N. Bies-Etheve C.A. da Silva J. Giraudat M. Koornneef K. Leon-Kloosterziel C. Valon M. Delseny (1999) ArticleTitleImportance of the B2 domain of the Arabidopsis ABI3 protein for Em and 2S albumin gene regulation Plant Mol. Biol. 40 1045–1054

    Google Scholar 

  • D. Bonetta P. McCourt (1998) ArticleTitleGenetic analysis of ABA signal transduction pathways Trends Plant Sci. 3 231–235

    Google Scholar 

  • K.J. Bradford A.B. Downie O.H. Gee V. Alvarado H. Yang P. Dahal (2003) ArticleTitleAbscisic acid and gibberellin differentially regulate expression of genes of the SNF1-related kinase complex in tomato seeds Plant Physiol. 132 1560–1576

    Google Scholar 

  • S.M. Brady S.F. Sarkar D. Bonetta P. McCourt (2003) ArticleTitleThe ABSCISIC ACID INSENSITIVE 3 (ABI3) gene is modulated by farnesylation and is involved in auxin signaling and lateral root development in Arabidopsis Plant J. 34 67–75

    Google Scholar 

  • I. Brocard-Gifford T.J. Lynch M.E. Garcia B. Malhotra R.R. Finkelstein (2004) ArticleTitleThe Arabidopsis thaliana ABSCISIC ACID-INSENSITIVE8 encodes a novel protein mediating abscisic acid and sugar responses essential for growth Plant Cell 16 406–421

    Google Scholar 

  • I.M. Brocard T.J. Lynch R.R. Finkelstein (2002) ArticleTitleRegulation and role of the Arabidopsis abscisic acid-insensitive 5 gene in abscisic acid, sugar, and stress response Plant Physiol. 129 1533–1543

    Google Scholar 

  • C.B. Carson T. Hattori L. Rosenkrans V. Vasil I.K. Vasil P.A. Peterson D. R. McCarty (1997) ArticleTitleThe quiescent/colorless alleles of viviparous1 show that the conserved B3 domain of VP1 is not essential for ABA-regulated gene expression in the seed Plant J. 12 1231–1240

    Google Scholar 

  • S.J. Clough A.F. Bent (1998) ArticleTitleFloral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana Plant J. 16 735–743

    Google Scholar 

  • I. Ezcurra P. Wycliffe L. Nehlin M. Ellerstrom L. Rask (2000) ArticleTitleTransactivation of the Brassica napus napin promoter by ABI3 requires interaction of the conserved B2 and B3 domains of ABI3 with different cis-elements: B2 mediates activation through an ABRE, whereas B3 interacts with an RY/G-box Plant J. 24 57–66

    Google Scholar 

  • R.R. Finkelstein S.S. Gampala C.D. Rock (2002) ArticleTitleAbscisic acid signaling in seeds and seedlings Plant Cell 14 (Suppl) S15–S45

    Google Scholar 

  • G.I. Frandsen J. Mundy J.T.C. Tzen (2001) ArticleTitleOil bodies and their associated proteins, oleosin and caleosin Physiol. Plant. 112 301–307

    Google Scholar 

  • T. Fujiwara E. Nambara K. Yamagishi D.B. Goto S. Naito (2002) Storage proteins C.R. Somerville E.M. Meyerowitz (Eds) The Arabidopsis Book. American Society of Plant Biologists Rockville, MD

    Google Scholar 

  • S. Gazzarrini P. McCourt (2001) ArticleTitleGenetic interactions between ABA, ethylene and sugar signaling pathways Curr. Opin. Plant Biol. 4 387–391

    Google Scholar 

  • J. Giraudat B.M. Hauge C. Valon J. Smalle F. Parcy H.M. Goodman (1992) ArticleTitleIsolation of the Arabidopsis ABI3 gene by positional cloning Plant Cell 4 1251–1261 Occurrence Handle10.1105/tpc.4.10.1251 Occurrence Handle1:CAS:528:DyaK3sXit1KqtbY%3D Occurrence Handle1359917

    Article  CAS  PubMed  Google Scholar 

  • J. Giraudat F. Parcy N. Bertauche F. Gosti J. Leung P.C. Morris M. Bouvier-Durand N. Vartanian (1994) ArticleTitleCurrent advances in abscisic acid action and signalling Plant Mol. Biol. 26 1557–1577

    Google Scholar 

  • C. Haslekas P.E. Grini S.H. Nordgard T. Thorstensen M.K. Viken V. Nygaard R.B. Aalen (2003a) ArticleTitleABI3 mediates expression of the peroxiredoxin antioxidant AtPER1 gene and induction by oxidative stress Plant Mol. Biol. 53 313–326

    Google Scholar 

  • C. Haslekas M.K. Viken P.E. Grini V. Nygaard S.H. Nordgard T.J. Meza R.B. Aalen (2003b) ArticleTitleSeed 1-cysteine peroxiredoxin antioxidants are not involved in dormancy, but contribute to inhibition of germination during stress Plant Physiol. 133 1148–1157

    Google Scholar 

  • A. Hill A. Nantel C.D. Rock R.S. Quatrano (1996) ArticleTitleA conserved domain of the viviparous-1 gene product enhances the DNA binding activity of the bZIP protein EmBP-1 and other transcription factors J. Biol. Chem. 271 3366–3374

    Google Scholar 

  • K.D. Johnson E.M. Herman M.J. Chrispeels (1989) ArticleTitleAn abundant, highly conserved tonoplast protein in seeds Plant Physiol. 91 1006–1013

    Google Scholar 

  • A.R. Kermode W. Finch-Savage (2002) Desiccation sensitivity in orthodox and recalcitrant seeds in relation to development M. Black H. Pritchard (Eds) Desiccation and Plant Survival CABI Oxon, UK 149–184

    Google Scholar 

  • M. Koornneef L. Bentsink H. Hilhorst (2002) ArticleTitleSeed dormancy and germination Curr. Opin. Plant Biol. 5 33–36

    Google Scholar 

  • M. Koornneef C.J. Hanhart H.W.M. Hilhorst C.M. Karssen (1989) ArticleTitleIn vivo inhibition of seed development and reserve protein accumulation in recombinants of abscisic acid biosynthesis and responsiveness mutants in Arabidopsis thaliana Plant Physiol. 90 463–469

    Google Scholar 

  • T. Kroj G. Savino C. Valon J. Giraudat F. Parcy (2003) ArticleTitleRegulation of storage protein gene expression in Arabidopsis Development 130 6065–6073

    Google Scholar 

  • S. Kurup H.D. Jones M.J. Holdsworth (2000) ArticleTitleInteractions of the developmental regulator ABI3 with proteins identified from developing Arabidopsis seeds Plant J. 21 143–155

    Google Scholar 

  • G. Lazarova Y. Zeng A.R. Kermode (2002) ArticleTitleCloning and expression of an ABSCISIC ACID-INSENSITIVE 3 (ABI3) gene homologue of yellow-cedar (Chamaecyparis nootkatensis) J. Exp. Bot. 53 1219–1221

    Google Scholar 

  • G. Li M.B. Chandrasekharan A.P. Wolffe T.C. Hall (2001) ArticleTitleChromatin structure and phaseolin gene regulation Plant Mol. Biol. 46 121–129

    Google Scholar 

  • D.R. McCarty (1995) ArticleTitleGenetic control and integration of maturation and germination pathways in seed development Ann. Rev. Plant Physiol. Plant Mol. Biol. 46 71–93

    Google Scholar 

  • D.R. McCarty T. Hattori C.B. Carson V. Vasil M. Lazar I.K. Vasil (1991) ArticleTitleThe Viviparous-1 developmental gene of maize encodes a novel transcriptional activator Cell 66 895–905 Occurrence Handle10.1016/0092-8674(91)90436-3

    Article  Google Scholar 

  • C. Meurs A.S. Basra C.M. Karssen L.C. Loon Particlevan (1992) ArticleTitleRole of abscisic acid in the induction of desiccation tolerance in developing seeds of Arabidopsis thaliana Plant Physiol. 98 1484–1493

    Google Scholar 

  • Miroshnichenko, S., Neumann, D., Conrad, U. and Manteuffel, R. 2004. Immuno-Modulation of Small Heat Shock Proteins in Tobacco Seeds Alters Packing of Storage Proteins in Protein Bodies and Delays their Mobilization during Germination. Abstracts of the 3rd International Symposium on Plant Dormancy, May 24–28, 2004. Wageningen University, The Netherlands. p. 52.

  • S. Nakamura T.J. Lynch R.R. Finkelstein (2001) ArticleTitlePhysical interactions between ABA response loci of Arabidopsis Plant J. 26 627–635

    Google Scholar 

  • E. Nambara R. Hayama Y. Tsuchiya M. Nishimura H. Kawaide Y. Kamiya S. Naito (2000) ArticleTitleThe role of ABI3 and FUS3 loci in Arabidopsis thaliana on phase transition from late embryo development to germination Dev. Biol. 220 412–423

    Google Scholar 

  • E. Nambara K. Keith P. McCourt S. Naito (1994) ArticleTitleIsolation of an internal deletion mutant of the Arabidopsis thaliana ABI3 gene Plant Cell Physiol. 35 509–513

    Google Scholar 

  • N.C. Paek B.M. Lee B.D. Gyu J.D. Smith (1998) ArticleTitleInhibition of germination gene expression by Viviparous-1 and ABA during maize kernel development Mol. Cells 8 336–342

    Google Scholar 

  • F. Parcy J. Giraudat (1997) ArticleTitleInteractions between the ABI1 and the ectopically expressed ABI3 genes in controlling abscisic acid responses in Arabidopsis vegetative tissues Plant J. 11 693–702

    Google Scholar 

  • F. Parcy C. Valon A. Kohara S. Misera J. Giraudat (1997) ArticleTitleThe ABSCISIC ACID-INSENSITIVE3, FUSCA3, and LEAFY COTYLEDON1 loci act in concert to control multiple aspects of Arabidopsis seed development Plant Cell 9 1265–1277

    Google Scholar 

  • F. Parcy C. Valon M. Raynal P. Gaubier-Comella M. Delseny J. Giraudat (1994) ArticleTitleRegulation of gene expression programs during Arabidopsis seed development: roles of the ABI3 locus and of endogenous abscisic acid Plant Cell 6 1567–1582

    Google Scholar 

  • J. Phillips O. Artsaenko H.P. Mock K. Müntz U. Conrad (1997) ArticleTitleSeed-specific immunomodulation of abscisic acid activity induces a developmental switch Eur. Mol. Biol. Org. J. 16 4489–4496

    Google Scholar 

  • J. Price T.C. Li S.G. Kang J.K. Na J.C. Jang (2003) ArticleTitleMechanisms of glucose signaling during germination of Arabidopsis Plant Physiol. 132 1424–1438

    Google Scholar 

  • C.K. Robinson S.A. Hill (1999) ArticleTitleAltered resource allocation during seed development in Arabidopsis caused by the abi3 mutation Plant Cell Environ. 22 117–123

    Google Scholar 

  • A. Rohde R. Rycke ParticleDe T. Beeckman G. Engler M. Montagu ParticleVan W. Boerjan (2000b) ArticleTitleABI3 affects plastid differentiation in dark-grown Arabidopsis seedlings Plant Cell 12 35–52

    Google Scholar 

  • A. Rohde S. Kurup M. Holdswoth (2000a) ArticleTitleABI3 emerges from the seed Trends Plant Sci. 5 418–419

    Google Scholar 

  • E.M. Soderman I.M. Brocard T.J. Lynch R.R. Finkelstein (2000) ArticleTitleRegulation and function of the Arabidopsis ABA-insensitive4 gene in seed and abscisic acid response signaling networks Plant Physiol. 124 1752–1765

    Google Scholar 

  • M. Suzuki C.Y. Kao S. Cocciolone D.R. McCarty (2001) ArticleTitleMaize VP1 complements Arabidopsis abi3 and confers a novel ABA/auxin interaction in roots Plant J. 28 409–418

    Google Scholar 

  • M. Takahashi Y. Uematsu K. Kashiwaba K. Yagasaki M. Hajika R. Matsunaga K. Komatsu M. Ishimoto (2003) ArticleTitleAccumulation of high levels of free amino acids in soybean seeds through integration of mutations conferring seed protein deficiency Planta 217 577–586

    Google Scholar 

  • N. Wehmeyer L.D. Hernandez R.R. Finkelstein E. Vierling (1996) ArticleTitleSynthesis of small heat-shock proteins is part of the developmental program of late seed maturation Plant Physiol. 112 747–757

    Google Scholar 

  • N. Wehmeyer E. Vierling (2000) ArticleTitleThe expression of small heat shock proteins in seeds responds to discrete developmental signals and suggests a general protective role in desiccation tolerance Plant Physiol. 122 1099–1108

    Google Scholar 

  • W.F. Wolkers M. Alberda M. Koornneef K.M. Leon-Kloosterziel F.A. Hoekstra (1998) ArticleTitleProperties of proteins and the glassy matrix in maturation-defective mutant seeds of Arabidopsis thaliana Plant J. 16 133–143

    Google Scholar 

  • J. Xia A.R. Kermode (1999) ArticleTitleAnalyses to determine the role of embryo immaturity in dormancy maintenance of yellow-cedar (Chamaecyparis nootkatensis) seeds: synthesis and accumulation of storage proteins and proteins implicated in desiccation tolerance J. Exp. Bot. 50 107–118

    Google Scholar 

  • Y. Zeng N. Raimondi A. R. Kermode (2003) ArticleTitleRole of an ABI3 homologue in dormancy maintenance of yellow-cedar seeds and in the activation of storage protein and Em gene promoters Plant Mol. Biol. 51 39–49

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Allison R. Kermode.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zeng, Y., Kermode, A.R. A gymnosperm ABI3 gene functions in a severe abscisic acid-insensitive mutant of Arabidopsis (abi3-6) to restore the wild-type phenotype and demonstrates a strong synergistic effect with sugar in the inhibition of post-germinative growth. Plant Mol Biol 56, 731–746 (2004). https://doi.org/10.1007/s11103-004-4952-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-004-4952-y

Keywords

Navigation