Skip to main content

Advertisement

Log in

Traumatic brain injury induced neuroendocrine changes: acute hormonal changes of anterior pituitary function

  • Published:
Pituitary Aims and scope Submit manuscript

Abstract

Purpose

It is estimated that approximately 69 million individuals worldwide will sustain a TBI each year, which accounts for substantial morbidity and mortality in both children and adults. TBI may lead to significant neuroendocrine changes, if the delicate pituitary is ruptured. In this review, we focus on the anterior pituitary hormonal changes in the acute post-TBI period and we present the evidence supporting the need for screening of anterior pituitary function in the early post-TBI time along with current suggestions regarding the endocrine assessment and management of these patients.

Methods

Original systematic articles with prospective and/or retrospective design studies of acute TBI were included, as were review articles and case series.

Results

Although TBI may motivate an acute increase of stress hormones, it may also generate a wide spectrum of anterior pituitary hormonal deficiencies. The frequency of post-traumatic anterior hypopituitarism (PTHP) varies according to the severity, the type of trauma, the time elapsed since injury, the study population, and the methodology used to diagnose pituitary hormone deficiency. Early neuroendocrine abnormalities may be transient, but additional late ones may also appear during the course of rehabilitation.

Conclusions

Acute hypocortisolism should be diagnosed and managed promptly, as it can be life-threatening, but currently there is no evidence to support treatment of acute GH, thyroid hormones or gonadotropins deficiencies. However, a more comprehensive assessment of anterior pituitary function should be undertaken both in the early and in the post-acute phase, since ongoing hormone deficiencies may adversely affect the recovery and quality of life of these patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dewan MC, Rattani A, Gupta S et al (2018) Estimating the global incidence of traumatic brain injury. J Neurosurg 27:1–18

    Google Scholar 

  2. Lauzier F, Turgeon AF, Boutin A et al (2014) Clinical outcomes, predictors, and prevalence of anterior pituitary disorders following traumatic brain injury: a systematic review. Crit Care Med 42(3):712–721

    Article  PubMed  Google Scholar 

  3. Dusick JR, Wang C, Cohan P et al (2012) Pathophysiology of hypopituitarism in the setting of brain injury. Pituitary 15(1):2–9

    Article  PubMed  PubMed Central  Google Scholar 

  4. Tanriverdi F, Schneider HJ, Aimaretti G et al (2015) Pituitary dysfunction after traumatic brain injury: a clinical and pathophysiological approach. Endocr Rev 36(3):305–342

    Article  CAS  PubMed  Google Scholar 

  5. Ceballos R (1966) Pituitary changes in head trauma (analysis of 102 consecutive cases of head injury). Ala J Med Sci 3(2):185–198

    CAS  PubMed  Google Scholar 

  6. Kornblum RN, Fisher RS (1969) Pituitary lesions in craniocerebral injuries. Arch Pathol 88(3):242–248

    CAS  PubMed  Google Scholar 

  7. Harper CG, Doyle D, Adams JH et al (1986) Analysis of abnormalities in pituitary gland in non-missile head injury: study of 100 consecutive cases. J Clin Pathol 39(7):769–773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Salehi F, Kovacs K, Scheithauer BW et al (2007) Histologic study of the human pituitary gland in acute traumatic brain injury. Brain Inj 21(6):651–656

    Article  PubMed  Google Scholar 

  9. Chaturvedi D, Suri A, Kasliwal MK et al (2010) Factors affecting the development of hypothalamus and pituitary lesions in fatal closed head injury: a prospective study. J Trauma 69(2):290–293

    Article  PubMed  Google Scholar 

  10. Kibayashi K, Shimada R, Nakao K et al (2012) Analysis of pituitary lesions in fatal closed head injury. Am J Forensic Med Pathol 33(3):206–210

    Article  PubMed  Google Scholar 

  11. Maiya B, Newcombe V, Nortje J et al (2008) Magnetic resonance imaging changes in the pituitary gland following acute traumatic brain injury. Intensive Care Med 34(3):468–475

    Article  PubMed  Google Scholar 

  12. Zheng P, He B, Guo Y et al (2015) Decreased apparent diffusion coefficient in the pituitary and correlation with hypopituitarism in patients with traumatic brain injury. J Neurosurg 123(1):75–80

    Article  PubMed  Google Scholar 

  13. Tanriverdi F, Ulutabanca H, Unluhizarci K et al (2007) Pituitary functions in the acute phase of traumatic brain injury: are they related to severity of the injury or mortality? Brain Inj 21(4):433–439

    Article  PubMed  Google Scholar 

  14. van der Eerden AW, Twickler MT, Sweep FC et al (2010) Should anterior pituitary function be tested during follow-up of all patients presenting at the emergency department because of traumatic brain injury? Eur J Endocrinol 162(1):19–28

    Article  PubMed  CAS  Google Scholar 

  15. Dimopoulou I, Tsagarakis S, Douka E et al (2004) The low-dose corticotropin stimulation test in acute traumatic and non-traumatic brain injury: incidence of hypo-responsiveness and relationship to outcome. Intensive Care Med 30(6):1216–1219

    Article  PubMed  Google Scholar 

  16. Klose M, Juul A, Struck J et al (2007) Acute and long-term pituitary insufficiency in traumatic brain injury: a prospective single-centre study. Clin Endocrinol (Oxf) 67(4):598–606

    CAS  Google Scholar 

  17. Krahulik D, Zapletalova J, Frysak Z et al (2010) Dysfunction of hypothalamic-hypophysial axis after traumatic brain injury in adults. J Neurosurg 113(3):581–584

    Article  PubMed  Google Scholar 

  18. Dalwadi PP, Bhagwat NM, Tayde PS et al (2017) Pituitary dysfunction in traumatic brain injury: is evaluation in the acute phase worth while? Indian J Endocrinol Metab 21(1):80–84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hari Kumar KV, Swamy MN, Khan MA (2016) Prevalence of hypothalamo pituitary dysfunction in patients of traumatic brain injury. Indian J Endocrinol Metab 20(6):772–778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cohan P, Wang C, McArthur DL et al (2005) Acute secondary adrenal insufficiency after traumatic brain injury: a prospective study. Crit Care Med 33(10):2358–2366

    Article  CAS  PubMed  Google Scholar 

  21. Wagner AK, McCullough EH, Niyonkuru C et al (2011) Acute serum hormone levels: characterization and prognosis after severe traumatic brain injury. J Neurotrauma 28(6):871–888

    Article  PubMed  PubMed Central  Google Scholar 

  22. Hannon MJ, Crowley RK, Behan LA et al (2013) Acute glucocorticoid deficiency and diabetes insipidus are common after acute traumatic brain injury and predict mortality. J Clin Endocrinol Metab 98(8):3229–3237

    Article  CAS  PubMed  Google Scholar 

  23. Bensalah M, Donaldson M, Aribi Y et al (2018) Cortisol evaluation during the acute phase of traumatic brain injury-A prospective study. Clin Endocrinol (Oxf) 88(5):627–636

    Article  CAS  Google Scholar 

  24. Olivecrona Z, Dahlqvist P, Koskinen LO (2013) Acute neuro-endocrine profile and prediction of outcome after severe brain injury. Scand J Trauma Resusc Emerg Med 20:21:33

    Article  Google Scholar 

  25. Tölli A, Borg J, Bellander BM et al (2017) Pituitary function within the first year after traumatic brain injury or subarachnoid haemorrhage. J Endocrinol Invest 40(2):193–205

    Article  PubMed  CAS  Google Scholar 

  26. Steinbok P, Thompson G (1979) Serum cortisol abnormalities after craniocerebral trauma. Neurosurgery 5(5):559–565

    Article  CAS  PubMed  Google Scholar 

  27. Kôiv L, Merisalu E, Zilmer K et al (1997) Changes of sympatho-adrenal and hypothalamo-pituitary-adrenocortical system in patients with head injury. Acta Neurol Scand 96(1):52–58

    Article  PubMed  Google Scholar 

  28. King LR, McLaurin RL, Lewis HP (1970) Plasma cortisol levels after head injury. Ann Surg 172(6):975–984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Feibel J, Kelly M, Lee L et al (1983) Loss of adrenocortical suppression after acute brain injury: role of increased intracranial pressure and brain stem function. J Clin Endocrinol Metab 57(6):1245–1250

    Article  CAS  PubMed  Google Scholar 

  30. Barton RN, Stoner HB, Watson SM (1987) Relationships among plasma cortisol, adrenocorticotrophin, and severity of injury in recently injured patients. J Trauma 27(4):384–392

    Article  CAS  PubMed  Google Scholar 

  31. Chioléro R, Lemarchand T, Schutz Y et al (1988) Plasma pituitary hormone levels in severe trauma with or without head injury. J Trauma 28(9):1368–1374

    Article  PubMed  Google Scholar 

  32. Della Corte F, Mancini A, Valle D et al (1998) Provocative hypothalamopituitary axis tests in severe head injury: correlations with severity and prognosis. Crit Care Med 26(8):1419–1426

    Article  CAS  PubMed  Google Scholar 

  33. Cernak I, Savic VJ, Lazarov A et al (1999) Neuroendocrine responses following graded traumatic brain injury in male adults. Brain Inj 13(12):1005–1015

    Article  CAS  PubMed  Google Scholar 

  34. Tandon A, Suri A, Kasliwal MK et al (2009) Assessment of endocrine abnormalities in severe traumatic brain injury: a prospective study. Acta Neurochir (Wien) 151(11):1411–1417

    Article  Google Scholar 

  35. Kleindienst A, Brabant G, Bock C et al (2009) Neuroendocrine function following traumatic brain injury and subsequent intensive care treatment: a prospective longitudinal evaluation. J Neurotrauma 26(9):1435–1446

    Article  PubMed  Google Scholar 

  36. Arindom Kakati BI, Devi V, Bhadrinarayan et al (2013) Endocrine dysfunction following traumatic brain injury in acute stage. Indian J Neurotrauma 10(20):92–96

    Article  Google Scholar 

  37. Prasanna KL, Mittal RS, Gandhi A (2015) Neuroendocrine dysfunction in acute phase of moderate-to-severe traumatic brain injury: a prospective study. Brain Inj 29(3):336–342

    Article  CAS  PubMed  Google Scholar 

  38. Boonen E, Bornstein SR, Van den Berghe G (2015) New insights into the controversy of adrenal function during critical illness. Lancet Diabetes Endocrinol 3(10):805–815

    Article  CAS  PubMed  Google Scholar 

  39. Hackl JM, Gottardis M, Wieser C et al (1991) Endocrine abnormalities in severe traumatic brain injury–a cue to prognosis in severe craniocerebral trauma? Intensive Care Med 17(1):25–29

    Article  CAS  PubMed  Google Scholar 

  40. Hohl A, Ronsoni MF, Debona R et al (2014) Role of hormonal levels on hospital mortality for male patients with severe traumatic brain injury. Brain Inj 28(10):1262–1269

    Article  PubMed  Google Scholar 

  41. Alavi SA, Tan CL, Menon DK et al (2016) Incidence of pituitary dysfunction following traumatic brain injury: A prospective study from a regional neurosurgical centre. Br J Neurosurg 30(3):302–306

    Article  PubMed  Google Scholar 

  42. Dimopoulou I, Tsagarakis S, Kouyialis AT et al (2004) Hypothalamic-pituitary-adrenal axis dysfunction in critically ill patients with traumatic brain injury: incidence, pathophysiology, and relationship to vasopressor dependence and peripheral interleukin-6 levels. Crit Care Med 32(2):404–408

    Article  CAS  PubMed  Google Scholar 

  43. Agha A, Rogers B, Mylotte D et al (2004) Neuroendocrine dysfunction in the acute phase of traumatic brain injury. Clin Endocrinol (Oxf) 60(5):584–591

    Article  CAS  Google Scholar 

  44. Tanriverdi F, Senyurek H, Unluhizarci K et al (2006) High risk of hypopituitarism after traumatic brain injury: a prospective investigation of anterior pituitary function in the acute phase and 12 months after trauma. J Clin Endocrinol Metab 91(6):2105–2111

    Article  CAS  PubMed  Google Scholar 

  45. Jeevanandam M, Holaday NJ, Petersen SR (1995) Plasma levels of insulin-like growth factor binding protein-3 in acute trauma patients. Metabolism 44(9):1205–1208

    Article  CAS  PubMed  Google Scholar 

  46. Wagner J, Dusick JR, McArthur DL et al (2010) Acute gonadotroph and somatotroph hormonal suppression after traumatic brain injury. J Neurotrauma 27(6):1007–1019

    Article  PubMed  PubMed Central  Google Scholar 

  47. De Marinis L, Mancini A, Valle D et al (1999) Hypothalamic derangement in traumatized patients: growth hormone (GH) and prolactin response to thyrotrophin-releasing hormone and GH-releasing hormone. Clin Endocrinol (Oxf) 50(6):741–747

    Article  Google Scholar 

  48. Dimopoulou I, Tsagarakis S, Theodorakopoulou M et al (2004) Endocrine abnormalities in critical care patients with moderate-to-severe head trauma: incidence, pattern and predisposing factors. Intensive Care Med 30(6):1051–1057

    Article  PubMed  Google Scholar 

  49. Woolf PD, Lee LA, Hamill RW et al (1988) Thyroid test abnormalities in traumatic brain injury: correlation with neurologic impairment and sympathetic nervous system activation. Am J Med 84(2):201–208

    Article  CAS  PubMed  Google Scholar 

  50. Malekpour B, Mehrafshan A, Saki F et al (2012) Effect of posttraumatic serum thyroid hormone levels on severity and mortality of patients with severe traumatic brain injury. Acta Med Iran 50(2):113–116

    CAS  PubMed  Google Scholar 

  51. Fleischer AS, Rudman DR, Payne NS et al (1978) Hypothalamic hypothyroidism and hypogonadism in prolonged traumatic coma. J Neurosurg 49(5):650–657

    Article  CAS  PubMed  Google Scholar 

  52. Rudman D, Fleischer AS, Kutner MH et al (1977) Suprahypophyseal hypogonadism and hypothyroidism during prolonged coma after head trauma. J Clin Endocrinol Metab 45(4):747–754

    Article  CAS  PubMed  Google Scholar 

  53. Matsuura H, Nakazawa S, Wakabayashi I (1985) Thyrotropin-releasing hormone provocative release of prolactin and thyrotropin in acute head injury. Neurosurgery 16(6):791–795

    Article  CAS  PubMed  Google Scholar 

  54. Agha A, Phillips J, O’Kelly P et al (2005) The natural history of post-traumatic hypopituitarism: implications for assessment and treatment. Am J Med 118(12):1416

    Article  PubMed  Google Scholar 

  55. Woolf PD, Hamill RW, McDonald JV et al (1985) Transient hypogonadotropic hypogonadism caused by critical illness. J Clin Endocrinol Metab 60(3):444–450

    Article  CAS  PubMed  Google Scholar 

  56. Barton DJ, Kumar RG, McCullough EH et al (2016) Persistent hypogonadotropic hypogonadism in men after severe traumatic brain injury: temporal hormone profiles and outcome prediction. J Head Trauma Rehabil 31(4):277–287

    Article  PubMed  PubMed Central  Google Scholar 

  57. Lee SC, Zasler ND, Kreutzer JS (1994) Male pituitary-gonadal dysfunction following severe traumatic brain injury. Brain Inj 8(6):571–577

    Article  CAS  PubMed  Google Scholar 

  58. Van den Berghe G (2016) On the neuroendocrinopathy of critical illness. Perspectives for feeding and novel treatments. Am J Respir Crit Care Med 1(11):1337–1348 194(

    Article  Google Scholar 

  59. Ranganathan P, Kumar RG, Davis K et al (2016) Longitudinal sex and stress hormone profiles among reproductive age and post-menopausal women after severe TBI: a case series analysis. Brain Inj 30(4):452–461

    Article  PubMed  Google Scholar 

  60. Hohl A, Zanela FA, Ghisi G et al Ronsoni MF, Diaz AP, Schwarzbold ML, Dafre AL, Reddi B, Lin K, Pizzol FD, Walz R (2018) Luteinizing hormone and testosterone levels during acute phase of severe traumatic brain injury: prognostic implications for adult male patients. Front Endocrinol (Lausanne) 9:13 29.

    Article  Google Scholar 

  61. Clark JD, Raggatt PR, Edwards OM (1988) Hypothalamic hypogonadism following major head injury. Clin Endocrinol (Oxf) 29(2):153–165

    Article  CAS  Google Scholar 

  62. Srinivas R, Brown SD, Chang YF et al (2010) Endocrine function in children acutely following severe traumatic brain injury. Childs Nerv Syst 26(5):647–653

    Article  PubMed  Google Scholar 

  63. Einaudi S, Matarazzo P, Peretta P et al (2006) Hypothalamo-hypophysial dysfunction after traumatic brain injury in children and adolescents: a preliminary retrospective and prospective study. J Pediatr Endocrinol Metab 19(5):691–703

    Article  CAS  PubMed  Google Scholar 

  64. Ulutabanca H, Hatipoglu N, Tanriverdi F et al (2014) Prospective investigation of anterior pituitary function in the acute phase and 12 months after pediatric traumatic brain injury. Childs Nerv Syst 30(6):1021–1028

    Article  PubMed  Google Scholar 

  65. Krahulik D, Aleksijevic D, Smolka V et al (2017) Prospective study of hypothalamo-hypophyseal dysfunction in children and adolescents following traumatic brain injury. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 161(1):80–85

    Article  PubMed  Google Scholar 

  66. Bianchi VE, Locatelli V, Rizzi L (2017) Neurotrophic and Neuroregenerative Effects of GH/IGF1. Int J Mol Sci 18(11):2441

    Article  PubMed Central  CAS  Google Scholar 

  67. Gottardis M, Nigitsch C, Schmutzhard E et al (1990) The secretion of human growth hormone stimulated by human growth hormone releasing factor following severe cranio-cerebral trauma. Intensive Care Med 16(3):163–166

    Article  CAS  PubMed  Google Scholar 

  68. King LR, Knowles HC Jr, McLaurin RL et al (1981) Pituitary hormone response to head injury. Neurosurgery 9(3):229–235

    CAS  PubMed  Google Scholar 

  69. Marina D, Klose M, Nordenbo A et al (2015) Early endocrine alterations reflect prolonged stress and relate to 1-year functional outcome in patients with severe brain injury. Eur J Endocrinol 172(6):813–822

    Article  CAS  PubMed  Google Scholar 

  70. Wagner AK, Brett CA, McCullough EH et al (2012) Persistent hypogonadism influences estradiol synthesis, cognition and outcome in males after severe TBI. Brain Inj 26(10):1226–1242

    Article  PubMed  Google Scholar 

  71. Lieberman SA, Oberoi AL, Gilkison CR et al (2001) Prevalence of neuroendocrine dysfunction in patients recovering from traumatic brain injury. J Clin Endocrinol Metab 86(6):2752–2756

    CAS  PubMed  Google Scholar 

  72. Annane D, Pastores SM, Arlt W et al (2017) Critical illness-related corticosteroid insufficiency (CIRCI): a narrative review from a Multispecialty Task Force of the Society of Critical Care Medicine (SCCM) and the European Society of Intensive Care Medicine (ESICM). Intensive Care Med 43(12):1781–1792

    Article  PubMed  Google Scholar 

  73. Hamrahian AH, Fleseriu M, AACE Adrenal Scientific Committee (2017) Evaluation and management of adrenal insufficiency in critically Ill patients: disease state review. Endocr Pract 23(6):716–725

    Article  PubMed  Google Scholar 

  74. Annane D, Pastores SM, Rochwerg B et al (2017) Correction to: Guidelines for the diagnosis and management of critical illness-related corticosteroid insufficiency (CIRCI) in critically ill patients (Part I): Society of Critical Care Medicine (SCCM) and European Society of Intensive Care Medicine (ESICM) 2017. Intensive Care Med 44(3):401–402

    Article  Google Scholar 

  75. Tan CL, Alavi SA, Baldeweg SE et al (2017) The screening and management of pituitary dysfunction following traumatic brain injury in adults: British Neurotrauma Group guidance. J Neurol Neurosurg Psychiatry 88(11):971–981

    Article  PubMed  PubMed Central  Google Scholar 

  76. Aimaretti G, Ambrosio MR, Di Somma C et al (2005) Residual pituitary function after brain injury-induced hypopituitarism: a prospective 12-month study. J Clin Endocrinol Metab 90(11):6085–6092

    Article  CAS  PubMed  Google Scholar 

  77. Urban RJ (2006) Hypopituitarism after acute brain injury. Growth Horm IGF Res 16(Suppl A):S25–S29

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stylianos Tsagarakis.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving human participants and/or animals

This paper does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ntali, G., Tsagarakis, S. Traumatic brain injury induced neuroendocrine changes: acute hormonal changes of anterior pituitary function. Pituitary 22, 283–295 (2019). https://doi.org/10.1007/s11102-019-00944-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11102-019-00944-0

Keywords

Navigation