Skip to main content

Advertisement

Log in

Magnetic resonance imaging changes in the pituitary gland following acute traumatic brain injury

  • Original
  • Published:
Intensive Care Medicine Aims and scope Submit manuscript

Abstract

Objective

The objective was to study the anatomical changes in the pituitary gland following acute moderate or severe traumatic brain injury (TBI).

Design

Retrospective, observational, case-control study.

Setting

Neurosciences Critical Care Unit of a university hospital.

Patients

Forty-one patients with moderate or severe TBI who underwent magnetic resonance imaging (MRI) during the acute phase (less than seven days) of TBI. MRI scans of 43 normal healthy volunteers were used as controls.

Interventions

None.

Measurements and main results

Patient demographics, Acute Physiology and Chronic Health Evaluation II (APACHE II) score, Injury Severity Score (ISS), post-resuscitation Glasgow Coma Score (GCS), Glasgow Outcome Score (GOS), mean intracranial pressure (ICP), mean cerebral perfusion pressure (CPP), computed tomography (CT) data, pituitary gland volumes and structural lesions in the pituitary on MRI scans. The pituitary glands were significantly enlarged in the TBI group (the median and interquartile range were as follows: cases 672 mm3 (range 601–783 mm3) and controls 552 mm3 (range 445–620 mm3); p value < 0.0001). APACHE II, GCS, GOS and ICP were not significantly correlated with the pituitary volume. Twelve of the 41 cases (30%) demonstrated focal changes in the pituitary gland (haemorrhage/haemorrhagic infarction (n = 5), swollen gland with bulging superior margin (n = 5), heterogeneous signal intensities in the anterior lobe (n = 2) and partial transection of the infundibular stalk (n = 1).

Conclusions

Acute TBI is associated with pituitary gland enlargement with specific lesions, which are seen in approximately 30% of patients. MRI of the pituitary may provide useful information about the mechanisms involved in post-traumatic hypopituitarism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ghajar J (2000) Traumatic brain injury. Lancet 356:923–929

    Article  PubMed  CAS  Google Scholar 

  2. Sosin DM, Sniezek JE, Thurman DJ (1996) Incidence of mild and moderate brain injury in the United States, 1991. Brain Inj 10:47–54

    Article  PubMed  CAS  Google Scholar 

  3. Agha A, Rogers B, Mylotte D, Taleb F, Tormey W, Phillips J, Thompson CJ (2004) Neuroendocrine dysfunction in the acute phase of traumatic brain injury. Clin Endocrinol (Oxf) 60:584–591

    Article  CAS  Google Scholar 

  4. Woolf PD, Hamill RW, McDonald JV, Lee LA, Kelly M (1986) Transient hypogonadotrophic hypogonadism after head trauma: effects on steroid precursors and correlation with sympathetic nervous system activity. Clin Endocrinol (Oxf) 25:265–274

    CAS  Google Scholar 

  5. Clark JD, Raggatt PR, Edwards OM (1988) Hypothalamic hypogonadism following major head injury. Clin Endocrinol (Oxf) 29:153–165

    CAS  Google Scholar 

  6. Fleischer AS, Rudman DR, Payne NS, Tindall GT (1978) Hypothalamic hypothyroidism and hypogonadism in prolonged traumatic coma. J Neurosurg 49:650–657

    PubMed  CAS  Google Scholar 

  7. Cryan E (1918) Pituitary damage due to skull base fracture. Dtsch Med Wochenschr 44:1261

    Google Scholar 

  8. Benvenga S (2005) Brain injury and hypopituitarism: the historical background. Pituitary 8:193–195

    Article  PubMed  Google Scholar 

  9. Rollero A, Murialdo G, Fonzi S, Garrone S, Gianelli MV, Gazzerro E, Barreca A, Polleri A (1998) Relationship between cognitive function, growth hormone and insulin-like growth factor I plasma levels in aged subjects. Neuropsychobiology 38:73–79

    Article  PubMed  CAS  Google Scholar 

  10. Alexander GM, Swerdloff RS, Wang C, Davidson T, McDonald V, Steiner B, Hines M (1998) Androgen-behavior correlations in hypogonadal men and eugonadal men. II. Cognitive abilities. Horm Behav 33:85–94

    Article  PubMed  CAS  Google Scholar 

  11. Basavaraju N, Phillips SL (1989) Cortisol deficient state. A cause of reversible cognitive impairment and delirium in the elderly. J Am Geriatr Soc 37:49–51

    PubMed  CAS  Google Scholar 

  12. Chang YC, Tsai JC, Tseng FY (2006) Neuropsychiatric disturbances and hypopituitarism after traumatic brain injury in an elderly man. J Formos Med Assoc 105:172–176

    PubMed  Google Scholar 

  13. Ceballos R (1966) Pituitary changes in head trauma (analysis of 102 consecutive cases of head injury). Ala J Med Sci 3:185–198

    PubMed  CAS  Google Scholar 

  14. Kornblum RN, Fisher RS (1969) Pituitary lesions in craniocerebral injuries. Arch Pathol 88:242–248

    PubMed  CAS  Google Scholar 

  15. Patel HC, Menon DK, Tebbs S, Hawker R, Hutchinson PJ, Kirkpatrick PJ (2002) Specialist neurocritical care and outcome from head injury. Intensive Care Med 28:547–553

    Article  PubMed  Google Scholar 

  16. Sassi RB, Nicoletti M, Brambilla P, Harenski K, Mallinger AG, Frank E, Kupfer DJ, Keshavan MS, Soares JC (2001) Decreased pituitary volume in patients with bipolar disorder. Biol Psychiatry 50:271–280

    Article  PubMed  CAS  Google Scholar 

  17. Kelly DF, Gonzalo IT, Cohan P, Berman N, Swerdloff R, Wang C (2000) Hypopituitarism following traumatic brain injury and aneurysmal subarachnoid hemorrhage: a preliminary report. J Neurosurg 93:743–752

    PubMed  CAS  Google Scholar 

  18. Wolman L (1956) Pituitary necrosis in raised intracranial pressure. J Path Bact 72:575–586

    Article  Google Scholar 

  19. Adams JH, Connor RC (1966) The shocked head injury. Lancet 1:263–264

    PubMed  CAS  Google Scholar 

  20. Daniel PM, Prichard MM, Treip CS (1959) Traumatic infarction of the anterior lobe of the pituitary gland. Lancet 2:927–931

    Article  PubMed  CAS  Google Scholar 

  21. Lavallee G, Morcos R, Palardy J, Aube M, Gilbert D (1995) MR of nonhemorrhagic postpartum pituitary apoplexy. AJNR Am J Neuroradiol 16:1939–1941

    PubMed  CAS  Google Scholar 

  22. Adams JHDP, Prichard MM (1966) Transection of the pituitary stalk in man: anatomical changes in the pituitary glands of 21 patients. J Neurol Neurosurg Psychiatry 29:545–554

    Article  Google Scholar 

  23. Daniel PM, Prichard MM (1956) Anterior pituitary necrosis; infarction of the pars distalis produced experimentally in the rat. Q J Exp Physiol Cogn Med Sci 41:215–229

    PubMed  CAS  Google Scholar 

  24. Agha A, Thompson CJ (2006) Anterior pituitary dysfunction following traumatic brain injury (TBI). Clin Endocrinol (Oxf) 64:481–488

    Article  Google Scholar 

  25. Herrmann BL, Rehder J, Kahlke S, Wiedemayer H, Doerfler A, Ischebeck W, Laumer R, Forsting M, Stolke D, Mann K (2006) Hypopituitarism following Severe Traumatic Brain Injury. Exp Clin Endocrinol Diabetes 114:316–321

    Article  PubMed  CAS  Google Scholar 

  26. Lieberman SA, Oberoi AL, Gilkison CR, Masel BE, Urban RJ (2001) Prevalence of neuroendocrine dysfunction in patients recovering from traumatic brain injury. J Clin Endocrinol Metab 86:2752–2756

    Article  PubMed  CAS  Google Scholar 

  27. Bondanelli M, De Marinis L, Ambrosio MR, Monesi M, Valle D, Zatelli MC, Fusco A, Bianchi A, Farneti M, degli Uberti EC (2004) Occurrence of pituitary dysfunction following traumatic brain injury. J Neurotrauma 21:685–696

    Article  PubMed  Google Scholar 

  28. Aimaretti G, Ambrosio MR, Di Somma C, Fusco A, Cannavò S, Gasperi M, Scaroni C, De Marinis L, Benvenga S, degli Uberti EC, Lombardi G, Mantero F, Martino E, Giordano G, Ghigo E (2004) Traumatic brain injury and subarachnoid haemorrhage are conditions at high risk for hypopituitarism: screening study at 3 months after the brain injury. Clin Endocrinol (Oxf) 61:320–326

    Article  CAS  Google Scholar 

  29. Agha A, Rogers B, Sherlock M, O'Kelly P, Tormey W, Phillips J, Thompson CJ (2004) Anterior pituitary dysfunction in survivors of traumatic brain injury. J Clin Endocrinol Metab 89:4929–4936

    Article  PubMed  CAS  Google Scholar 

  30. Lorenzo M, Peino R, Castro AI, Lage M, Popovic V, Dieguez C, Casanueva FF (2005) Hypopituitarism and growth hormone deficiency in adult subjects after traumatic brain injury: who and when to test. Pituitary 8:233–237

    Article  PubMed  Google Scholar 

  31. Sheehan HL, Summers VK (1949) The syndrome of hypopituitarism. Q J Med 18:319–378

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported within the framework of a grant from the Medical Research Council. V. Newcombe is supported by the Gates Cambridge Trust and an Overseas Research Studentship. J. Nortje was supported by a British Journal of Anaesthesia/Royal College of Anaesthetics Research Fellowship. P. Hutchinson is supported by an Academy of Medical Sciences Health Foundation Senior Surgical Scientist Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Balachandra Maiya.

Additional information

Descriptor: Neurology/Sedation — Neurotrauma

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maiya, B., Newcombe, V., Nortje, J. et al. Magnetic resonance imaging changes in the pituitary gland following acute traumatic brain injury. Intensive Care Med 34, 468–475 (2008). https://doi.org/10.1007/s00134-007-0902-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00134-007-0902-x

Keywords

Navigation