Skip to main content

Advertisement

Log in

Downregulation of Insulin-like growth factor binding protein 6 is associated with ACTH-secreting pituitary adenoma growth

  • Published:
Pituitary Aims and scope Submit manuscript

Abstract

Background

Adrenocorticotrophic hormone (ACTH)-dependent Cushing’s syndrome, called Cushing disease, is caused by a corticotroph tumor of the pituitary gland. Insulin-like growth factor binding protein 6 (IGFBP6), which regulates insulin-like growth factor (IGF) activity and inhibits several IGF2-dependent cancer growths, plays a pivotal role in the tumorigenesis of malignancy, but its roles in ACTH-secreting pituitary adenomas remain unclear.

Objective

To investigate IGFBP6 expression in ACTH-secreting pituitary adenomas, and its involvement in tumor growth.

Methods

Sporadic ACTH-secreting pituitary adenomas specimens (n = 41) and adjacent non-tumorous pituitary tissues (n = 9) were collected by transphenoidal surgery. IGFBP6 expression was assessed by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) and validated by Western blotting. Associations of IGFBP6 expression with maximum tumor diameter or Ki-67 labeling index were evaluated in ACTH-secreting pituitary adenomas.

Results

IGFBP6 mRNA and protein expression were both decreased in ACTH-secreting pituitary adenomas, compared to adjacent non-tumorous pituitary tissues (P < 0.01). IGFBP6 expression was correlated inversely with maximum tumor diameter (Rho = −0.53, P < 0.0001) and Ki-67 levels (Rho = −0.52, P < 0.05). Moreover, IGFBP6 downregulation activated PI3 K-AKT-mTOR pathway in ACTH-secreting pituitary adenomas.

Conclusions

IGFBP6 attenuation in ACTH-secreting pituitary adenomas is associated with tumor growth, through activation of PI3K-AKT-mTOR pathway. The finding underlies IGFBP6 roles in Cushing disease and would potentially provide a novel target of medical therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Melmed S (2003) Mechanisms for pituitary tumorigenesis: the plastic pituitary. J Clin Invest 112:1603–1618

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Meij BP, Lopes MB, Ellegala DB, Alden TD, Laws ER Jr (2002) The long-term significance of microscopic dural invasion in 354 patients with pituitary adenomas treated with transsphenoidal surgery. J Neurosurg 96:195–208

    Article  PubMed  Google Scholar 

  3. Biller BM, Grossman AB, Stewart PM, Melmed S, Bertagna X, Bertherat J, Buchfelder M, Colao A, Hermus AR, Hofland LJ, Klibanski A, Lacroix A, Lindsay JR, Newell-Price J, Nieman LK, Petersenn S, Sonino N, Stalla GK, Swearingen B, Vance ML, Wass JA, Boscaro M (2008) Treatment of adrenocorticotropin-dependent Cushing’s syndrome: a consensus statement. J Clin Endocrinol Metab 93:2454–2462

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Kaptain GJ, Vincent DA, Sheehan JP, Laws ER Jr (2008) Transsphenoidal approaches for the extracapsular resection of midline suprasellar and anterior cranial base lesions. Neurosurgery 62:1264–1271

    Article  PubMed  Google Scholar 

  5. Gadelha M, Neto LV. (2014) Efficacy of medical treatment in Cushing's disease: a systematic review. Clin Endocrinol (Oxf) 80:1–12

    Google Scholar 

  6. Bach LA (2005) IGFBP-6 five years on; not so ‘forgotten’? Growth Horm IGF Res 15:185–192

    Article  CAS  PubMed  Google Scholar 

  7. Toretsky JA, Helman LJ (1996) Involvement of IGF-II in human cancer. J Endocrinol 149:367–372

    Article  CAS  PubMed  Google Scholar 

  8. Zhang L, Zhou W, Velculescu VE, Kern SE, Hruban RH, Hamilton SR, Vogelstein B, Kinzler KW (1997) Gene expression profiles in normal and cancer cells. Science 276:1268–1272

    Article  CAS  PubMed  Google Scholar 

  9. Gallicchio MA, Kneen M, Hall C, Scott AM, Bach LA (2001) Overexpression of insulin-like growth factor binding protein-6 inhibits rhabdomyosarcoma growth in vivo. Int J Cancer 94:645–651

    Article  CAS  PubMed  Google Scholar 

  10. Firth SM, Baxter RC (2002) Cellular actions of the insulin-like growth factor binding proteins. Endocr Rev 23:824–854

    Article  CAS  PubMed  Google Scholar 

  11. Gallicchio MA, Kaun C, Wojta J, Binder B, Bach LA (2003) Urokinase type plasminogen activator receptor is involved in insulin-like growth factor-induced migration of rhabdomyosarcoma cells in vitro. J Cell Physiol 197:131–138

    Article  CAS  PubMed  Google Scholar 

  12. Sueoka N, Lee HY, Wiehle S, Cristiano RJ, Fang B, Ji L, Roth JA, Hong WK, Cohen P, Kurie JM (2000) Insulin-like growth factor binding protein-6 activates programmed cell death in non-small cell lung cancer cells. Oncogene 19:4432–4436

    Article  CAS  PubMed  Google Scholar 

  13. Vogel T (2013) Insulin/IGF-signalling in embryonic and adult neural proliferation and differentiation in the mammalian central nervous system. doi:10.5772/54946

  14. Werner H, Weinstein D, Bentov I (2008) Similarities and differences between insulin and IGF-I: structures, receptors, and signalling pathways. Arch Physiol Biochem 114:17–22

    Article  CAS  PubMed  Google Scholar 

  15. Fumagalli L, Campa CC, Germena G, Lowell CA, Hirsch E, Berton G (2013) Class I phosphoinositide-3-kinases and SRC kinases play a nonredundant role in regulation of adhesion-independent and -dependent neutrophil reactive oxygen species generation. J Immunol 190:3648–3660

    Article  CAS  PubMed  Google Scholar 

  16. Gehart H, Kumpf S, Ittner A, Ricci R (2010) MAPK signalling in cellular metabolism: stress or wellness? EMBO Rep 11:834–840

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Yamada S, Fukuhara N, Nishioka H, Takeshita A, Inoshita N, Ito J, Takeuchi Y (2012) Surgical management and outcomes in patients with Cushing disease with negative pituitary magnetic resonance imaging. World Neurosurg 77:525–532

    Article  PubMed  Google Scholar 

  18. Mampalam TJ, Wilson CB (1988) Transsphenoidal microsurgery for cushing disease a report of 216 cases. Ann Intern Med 109(6):487–493

    Article  CAS  PubMed  Google Scholar 

  19. Kiehna EN, Keil M, Lodish M, Stratakis C, Oldfield EH (2010) Pseudotumor cerebri after surgical remission of Cushing’s disease. J Clin Endocrinol Metab 95:1528–1532

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Monteith SJ, Starke RM, Jane JA Jr, Oldfield EH (2012) Use of the histological pseudocapsule in surgery for Cushing disease: rapid postoperative cortisol decline predicting complete tumor resection. J Neurosurg 116:721–727

    Article  CAS  PubMed  Google Scholar 

  21. Xing B, Ren Z, Su C, Wang R, Yang Y, Li Y (2011) Transsphenoidal micrmurgery in 541 patients with Cushing’s disease. Chin J Neurosurg 27:868–871. doi:10.3760/cma.j.issn.1001-2346.2011.09.003

    Google Scholar 

  22. Jagannathan J, Smith R, DeVroom HL, Vortmeyer AO, Stratakis CA, Nieman LK, Oldfield EH (2009) Outcome of using the histological pseudocapsule as a surgical capsule in Cushing disease. J Neurosurg 111:531–539

    Article  PubMed Central  PubMed  Google Scholar 

  23. Vance ML (2003) Perioperative management of patients undergoing pituitary surgery. Endocrinol Metab Clin North Am 32:355–365

    Article  PubMed  Google Scholar 

  24. Kato M, Ishizaki A, Hellman U, Wernstedt C, Kyogoku M, Miyazono K, Heldin CH, Funa K (1995) A human keratinocyte cell line produces two autocrine growth inhibitors, transforming growth factor-beta and insulin-like growth factor binding protein-6, in a calcium- and cell density-dependent manner. J Biol Chem 270:12373–12379

    Article  CAS  PubMed  Google Scholar 

  25. Zada G (2013) Diagnosis and multimodality management of cushing’s disease: a practical review. Int J Endocrinol 2013:893781

    Article  PubMed Central  PubMed  Google Scholar 

  26. Nieman LK, Biller BM, Findling JW, Newell-Price J, Savage MO, Stewart PM, Montori VM (2008) The diagnosis of cushing’s syndrome: an endocrine society clinical practice guideline. J Clin Endocrinol Metab 93:1526–1540

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Aghi MK (2008) Management of recurrent and refractory Cushing disease. Nat Clin Pract Endocrinol Metab 4:560–568

    Article  PubMed  Google Scholar 

  28. Hwa V, Oh Y, Rosenfeld RG (1999) The insulin-like growth factor-binding protein (IGFBP) superfamily. Endocr Rev 20:761–787

    CAS  PubMed  Google Scholar 

  29. Jones JI, Clemmons DR (1995) Insulin-like growth factors and their binding proteins: biological actions. Endocr Rev 16:3–34

    CAS  PubMed  Google Scholar 

  30. Kelley KM, Oh Y, Gargosky SE, Gucev Z, Matsumoto T, Hwa V, Ng L, Simpson DM, Rosenfeld RG (1996) Insulin-like growth factor-binding proteins (IGFBPs) and their regulatory dynamics. Int J Biochem Cell Biol 28:619–637

    Article  CAS  PubMed  Google Scholar 

  31. Rajaram S, Baylink DJ, Mohan S (1997) Insulin-like growth factor-binding proteins in serum and other biological fluids: regulation and functions. Endocr Rev 18:801–831

    CAS  PubMed  Google Scholar 

  32. Djiogue S, Nwabo Kamdje AH, Vecchio L, Kipanyula MJ, Farahna M, Aldebasi Y, Seke Etet PF (2013) Insulin resistance and cancer: the role of insulin and IGFs. Endocr Relat Cancer 20:R1–R17

    Article  CAS  PubMed  Google Scholar 

  33. Koyama N, Zhang J, Huqun, Miyazawa H, Tanaka T, Su X, Hagiwara K (2008) Identification of IGFBP-6 as an effector of the tumor suppressor activity of SEMA3B. Oncogene 27:6581–6589

    Article  CAS  PubMed  Google Scholar 

  34. Kuo YS, Tang YB, Lu TY, Wu HC, Lin CT (2010) IGFBP-6 plays a role as an oncosuppressor gene in NPC pathogenesis through regulating EGR-1 expression. J Pathol 222:299–309

    Article  CAS  PubMed  Google Scholar 

  35. Martins AS, Olmos D, Missiaglia E, Shipley J (2011) Targeting the insulin-like growth factor pathway in rhabdomyosarcomas: rationale and future perspectives. Sarcoma 2011:209736

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

Authors thank Dr. Cuiqi Zhou (Cedars-Sinai Medical Center, Los Angeles, California) for helpful discussion and editing of this manuscript. This work is supported by National Natural Science Foundation of China (Grant 81072084), the Ministry of Science and Technology of China (2011AA020112 and 2014BAI04B00).

Conflict of interest

The authors do not have conflict of interests.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chengyu Jiang or Renzhi Wang.

Additional information

Yakun Yang and Miaomiao Sheng have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, Y., Sheng, M., Huang, F. et al. Downregulation of Insulin-like growth factor binding protein 6 is associated with ACTH-secreting pituitary adenoma growth. Pituitary 17, 505–513 (2014). https://doi.org/10.1007/s11102-013-0535-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11102-013-0535-8

Keywords

Navigation