Skip to main content

Advertisement

Log in

Cushing’s disease

  • Published:
Pituitary Aims and scope Submit manuscript

Abstract

Cushing’s disease, i.e., pituitary ACTH-secreting adenoma causing excess glucocorticoid secretion, is a rare disease with significant mortality and morbidity. Timely diagnosis and appropriate treatment can alter the course of the disease and are therefore mandatory. First step of the diagnostic work-up is the endogenous glucocorticoid excess by measurement of urinary free cortisol, cortisol circadian rhythmicity or suppression by low doses of dexamethasone. In patients with equivocal results, second line tests, such as the dexamethasone-suppressed CRH test and desmopressin stimulation, usually enable the diagnosis to be confirmed. Measurement of plasma ACTH then allows the distinction between ACTH-dependent (e.g., pituitary or extrapituitary neuroendocrine tumors) and ACTH-independent causes (e.g., adrenal tumors). The last step in the diagnostic algorhythm is often the most fraught with problems as the distinction between Cushing’s disease and ectopic ACTH secretion relies on judicious interpretation of several diagnostic procedures. Positive responses to stimulation with CRH and inhibition by high doses of dexamethasone, if concurrent, enable a pituitary origin to be established whereas conflicting results call for inferior petrosal sinus sampling, the latter to be performed in experienced centres only. Visualisation of the tumor at pituitary imaging is helpful but not required for the diagnosis, as microadenomas often remain undectected by MRI and/or CT scan and, on the other hand, visualisation of a non-secreting incidentaloma may be misleading. Surgical removal of the pituitary tumor is the optimal treatment choice and should be attempted in every patient. Surgical failures as well as relapses can be treated by radiotherapy, medical therapy or, if necessary, bilateral adrenalectomy. Finally, patients cured of Cushing’s disease require long-term monitoring given the risk of relapse and clinical burden of associated ailments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Etxabe J, Vazquez JA (1994) Morbidity and mortality in Cushing’s disease: an epidemiological approach. Clin Endocrinol 40:479–484

    CAS  Google Scholar 

  2. Savage MO, Besser GM (1996) Cushing’s disease in childhood. Trends Endocrinol Metab 7:213–216

    Article  CAS  PubMed  Google Scholar 

  3. Brandi ML, Marx SJ, Aurbach GD, Fitzpatrick LA (1987) Familial multiple endocrine neoplasia type I: a new look at pathophysiology. Endocr Rev 8:391–405

    Article  PubMed  CAS  Google Scholar 

  4. Lionakis MS, Kontoyiannis DP (2003) Glucocorticoids and invasive fungal infections. Lancet 362:1828–1838

    Article  PubMed  CAS  Google Scholar 

  5. Plotz CM, Knowlton AI, Ragan C (1952) The natural history of Cushing’s syndrome. Am J Med 13:597–614

    Article  PubMed  CAS  Google Scholar 

  6. Perry LA, Grossman AB (1997) The role of the laboratory in the diagnosis of Cushing’s syndrome. Ann Clin Biochem 34:345–359

    PubMed  Google Scholar 

  7. Burke CW, Beardwell CG (1973) Cushing’s syndrome. An evaluation of the clinical usefulness of urinary free cortisol and other urinary steroid measurements in diagnosis. Q J Med 42:175–204

    PubMed  CAS  Google Scholar 

  8. Gomez MT, Malozowski S, Winterer J, Vamvakopoulos NC, Chrousos GP (1991) Urinary free cortisol values in normal children and adolescents. J Pediatr 118:256–258

    Article  PubMed  CAS  Google Scholar 

  9. Papanicolaou DA, Yanovski JA, Cutler GB Jr, Chrousos GP, Nieman LK (1998) A single midnight serum cortisol measurement distinguishes Cushing’s syndrome from pseudo-Cushing states. J Clin Endocrinol Metab 83:1163–1167

    Article  PubMed  CAS  Google Scholar 

  10. Gorges R, Knappe G, Gerl H, Ventz M, Stahl F (1999) Diagnosis of Cushing’s syndrome: re-evaluation of midnight plasma cortisol vs urinary free cortisol and low-dose dexamethasone suppression test in a large patient group. J Endocrinol Invest 22:241–249

    PubMed  CAS  Google Scholar 

  11. Newell-Price J, Trainer PJ, Perry L, Wass JAH, Grossman AB, Besser GM (1995) A single sleeping midnight cortisol has 100% sensitivity for the diagnosis of Cushing’s syndrome. Clin Endocrinol 43:545–550

    CAS  Google Scholar 

  12. Putignano P, Toja P, Dubini A, Pecori Giraldi F, Corsello SM, Cavagnini F (2003) Midnight salivary cortisol versus urinary free and midnight cortisol as screening tests for Cushing’s syndrome. J Clin Endocrinol Metab 88:4153–4157

    Article  PubMed  CAS  Google Scholar 

  13. Jones KL (1990) The Cushing’s syndrome. Pediatr Clin North Am 37:1313–1332

    PubMed  CAS  Google Scholar 

  14. Magiakou MA, Chrousos GP (2002) Cushing’s syndrome in children and adolescents: current diagnostic and therapeutic strategies. J Endocrinol Invest 25:181–194

    PubMed  CAS  Google Scholar 

  15. Streeten DH, Faas FH, Elders MJ, Dalakos TG, Voorhess M (1975) Hypercortisolism in childhood: shortcomings of conventional diagnostic criteria. Pediatrics 56:797–803

    PubMed  CAS  Google Scholar 

  16. Invitti C, Pecori Giraldi F, De Martin M, Cavagnini F (1999) the Study Group of the Italian Society of Endocrinology on the Pathophysiology of the Hypotalamic-Pituitary-Adrenal Axis Diagnosis and management of Cushing’s syndrome: results of an Italian multicentre study. J Clin Endocrinol Metab 84:440–448

    Google Scholar 

  17. Findling JW, Raff H, Aron DC (2004) The low-dose dexamethasone suppression test: a reevaluation in patients with Cushing’s syndrome. J Clin Endocrinol Metab 89:1222–1226

    Article  PubMed  CAS  Google Scholar 

  18. Wood PJ, Barth JH, Freedman DB, Perry L, Sheridan B (1997) Evidence for the low dose dexamethasone suppression test to screen for Cushing’s syndrome—recommendations for a protocol for biochemistry laboratories. Ann Clin Biochem 34:222–229

    PubMed  CAS  Google Scholar 

  19. Yanovski JA, Cutler GB Jr, Chrousos GP, Nieman LK (1993) Corticotropin-releasing hormone stimulation following low-dose dexamethasone administration. JAMA 269:2232–2238

    Article  PubMed  CAS  Google Scholar 

  20. Tsagarakis S, Vasiliou V, Kokkoris P, Stavropoulos G, Thalassinos N (1999) Assessment of cortisol and ACTH responses to the desmopressin test in patients with Cushing’s syndrome and simple obesity. Clin Endocrinol 51:473–477

    Article  CAS  Google Scholar 

  21. Moro M, Putignano P, Losa M, Invitti C, Maraschini C, Cavagnini F (2000) The desmopressin test in the differential diagnosis between Cushing’s disease and pseudoCushing states. J Clin Endocrinol Metab 85:3596–3574

    Google Scholar 

  22. Kaye TB, Crapo L (1990) The Cushing’s syndrome: an update on diagnostic tests. Ann Intern Med 112:434–444

    PubMed  CAS  Google Scholar 

  23. Nieman LK, Oldfield EH, Wesley R, Chrousos GP, Loriaux DL, Cutler GB Jr (1993) A simplified morning ovine corticotrophin-releasing hormone stimulation test for the differential diagnosis of adrenocorticotropin-dependent Cushing’s syndrome. J Clin Endocrinol Metab 77:1308–1312

    Article  PubMed  CAS  Google Scholar 

  24. Loriaux DL, Nieman L (1991) Corticotropin-releasing hormone testing in pituitary disease. Endocrinol Metab Clin North Am 20:363–369

    PubMed  CAS  Google Scholar 

  25. Isidori AM, Kaltsas GA, Mohammed S, Morris DG, Jenkins P, Chew SL, Monson JP, Besser GM, Grossman AB (2003) Discriminatory value of the low-dose dexamethasone suppression test in establishing the diagnosis and differential diagnosis of Cushing’s syndrome. J Clin Endocrinol Metab 88:5299–5306

    Article  PubMed  CAS  Google Scholar 

  26. Aron DC, Raff H, Findling JW (1997) Effectiveness versus efficacy: the limited value in clinical practice of high dose dexamethasone suppression testing in the differential diagnosis of adrenocorticotropin-dependent Cushing’s syndrome. J Clin Endocrinol Metab 82:1780–1785

    Article  PubMed  CAS  Google Scholar 

  27. Dichek HL, Nieman LK, Oldfield EH, Pass HI, Malley JD, Cutler Jr GB (1994) A comparison of the standard high dose dexamethasone suppression test and the overnight 8-mg dexamethasone suppression test for the differential diagnosis of adrenocorticotropin-dependent Cushing’s syndrome. J Clin Endocrinol Metab 78:418–422

    Article  PubMed  CAS  Google Scholar 

  28. Reimondo G, Paccotti P, Minetto M, Termine A, Stura G, Bergui M, Angeli A, Terzolo M (2003) The corticotropin-releasing hormone test is the most reliable noninvasive method to differentiate pituitary from ectopic ACTH secretion in Cushing’s syndrome. Clin Endocrinol 58:718–724

    Article  CAS  Google Scholar 

  29. Kaltsas GA, Giannulis MG, Newell-Price JD, Dacie JE, Thakkar C, Afshar F, Monson JP, Grossman AB, Besser GM, Trainer PJ (1999) A critical analysis of the value of simultaneous inferior petrosal sinus sampling in Cushing’s disease and the occult ectopic adrenocorticotropin syndrome. J Clin Endocrinol Metab 84:487–492

    Article  PubMed  CAS  Google Scholar 

  30. Colao A, Faggiano A, Pivonello R, Pecori Giraldi F, Cavagnini F, Lombardi G; Study Group of the Italian Endocrinology Society on the pathophysiology of the Hypothalamic-Pituitary-Adrenal Axis (2001) Inferior petrosal sinus sampling in the differential diagnosis of Cushing’s syndrome: results of an Italian multicentre study. Eur J Endocrinol 144:499–507

    Google Scholar 

  31. Swearingen B, Katznelson L, Miller K, Grinspoon S, Waltman A, Dorer DJ, Klibanski A, Biller BM (2004) Diagnostic errors after inferior petrosal sinus sampling. J Clin Endocrinol Metab 89:3752–3763

    Article  PubMed  CAS  Google Scholar 

  32. Pecori Giraldi F, Invitti C, Cavagnini F (2000) Inferior petrosal sinus sampling ten years down the road. J Endocrinol Invest 23:325–327

    PubMed  CAS  Google Scholar 

  33. Ilias I, Chang R, Pacak K, Oldfield EH, Wesley R, Doppman J, Nieman LK (2004) Jugular venous sampling: an alternative to petrosal sinus sampling for the diagnostic evaluation of adrenocorticotropin hormone-dependent Cushing’s syndrome. J Clin Endocrinol Metab 89:3795–3800

    Article  PubMed  CAS  Google Scholar 

  34. Liu C, Lo JC, Dowd CF, Wilson CB, Kunwar S, Aron DC, Tyrrell JB (2004) Cavernous and inferior petrosal sinus sampling in the evaluation of ACTH-dependent Cushing’s syndrome. Clin Endocrinol 61:478–486

    Article  Google Scholar 

  35. Mancini T, Kola B, Mantero F, Boscaro M, Arnaldi G (2004) High cardiovascular risk in patients with Cushing’s syndrome according to 1999 WHO/ISH guidelines. Clin Endocrinol 61:768–777

    Article  Google Scholar 

  36. Dagenais GR, Yi Q, Mann JF, Bosch J, Pogue J, Yusuf S (2005) Prognostic impact of body weight and abdominal obesity in women and men with cardiovascular disease. Am Heart J 149:54–60

    Article  PubMed  Google Scholar 

  37. Faggiano A, Pivonello R, Spiezia S, De Martino MC, Filippella M, Di Somma C, Lombardi G, Colao A (2003) Cardiovascular risk factors and common carotid artery caliber and stiffness in patients with Cushing’s disease during active disease and 1 year after disease remission. J Clin Endcorinol Metab 88:2527–2533

    Article  CAS  Google Scholar 

  38. Melanson KJ, McInnis KJ, Rippe JM, Blackburn G, Wilson PF (2001) Obesity and cardiovascular disease risk: research update. Cardiol Rev 9:202–207

    Article  PubMed  CAS  Google Scholar 

  39. Friedman TC, Mastorakos G, Newman TD, Muller NM, Horton EG, Costello R, Papadopoulos NM, Chrousos GP (1996) Carbohydrate and lipid metabolism in endogenous hypercortisolism: shared features with metabolic syndrome X and NIDDM. Endocr J 43:645–655

    PubMed  CAS  Google Scholar 

  40. Heaney AP, Fernando M, Yong WH, Melmed S (2002) Functional PPAR-gamma receptor is a novel therapeutic target for ACTH-secreting pituitary adenomas. Nat Med 8:1281–1287

    Article  PubMed  CAS  Google Scholar 

  41. Fatti LM, Bottasso B, Invitti C, Coppola R, Cavagnini F, Mannucci PM (2000) Markers of activation of coagulation and fibrinolysis in patients with Cushing’s syndrome. J Endocrinol Invest 23:145–150

    PubMed  CAS  Google Scholar 

  42. Small M, Lowe GD, Forbes CD, Thomson JA (1983) Thromboembolic complications in Cushing’s syndrome. Clin Endocrinol 19:503–511

    CAS  Google Scholar 

  43. Boscaro M, Sonino N, Scarda A, Barzon L, Fallo F, Sartori MT, Patrassi GM, Girolami A (2002) Anticoagulant prophylaxis markedly reduces thromboembolic complications in Cushing’s syndrome. J Clin Endocrinol Metab 87:3662–3666

    Article  PubMed  CAS  Google Scholar 

  44. Leong GM, Mercado-Asis LB, Reynolds JC, Hill SC, Oldfield EH, Chrousos GP (1996) The effect of Cushing’s disease on bone mineral density, body composition, growth, and puberty: a report of an identical adolescent twin pair. J Clin Endocrinol Metab 81:1905–1911

    Article  PubMed  CAS  Google Scholar 

  45. Faggiano A, Pivonello R, Filippella M, Di Somma C, Orio F Jr, Lombardi G, Colao A (2001) Spine abnormalities and damage in patients cured from Cushing’s disease. Pituitary 4:153–161

    Article  PubMed  CAS  Google Scholar 

  46. Faggiano A, Pivonello R, Melis D, Filippella M, Di Somma C, Peretta M, Lombardi G, Colao A (2003) Nephrolitiasis in Cushing’s disease: prevalence, etiopathogenesis, and modification after disease cure. J Clin Endocrinol Metab 88:2076–2080

    Article  PubMed  CAS  Google Scholar 

  47. Cohen D, Adachi JD (2004) The treatment of glucorticoid-induced osteoporosis. J Steroid Biochem Mol Biol 88:337–349

    Article  PubMed  CAS  Google Scholar 

  48. Orth DN, Kovacs WJ, DeBold CR (1992) The adrenal cortex. In: Wilson JD, Foster DW (eds), Williams textbook of endocrinology. Saunders Co, Philadelphia, pp. 489–619

  49. Sonino N, Fava GA (2001) Psychiatric disorders associated with Cushing’s syndrome. CNS Drugs 15:361–373

    Article  PubMed  CAS  Google Scholar 

  50. Giustina A, Veldhuis JD (1998) Pathophysiology of the neuroregulation of growth hormone secretion in experimental animals and the human. Endocr Rev 19:717–797

    Article  PubMed  CAS  Google Scholar 

  51. Invitti C, Manfrini R, Romanini BM, Cavagnini F (1995) High prevalence of nodular thyroid disease in patients with Cushing’s disease. Clin Endocrinol 43:359–363

    CAS  Google Scholar 

  52. Pecori Giraldi F (2004) Sindrome di Cushing e manifestazioni oculari. Boll Ocul 83:1–4

    Google Scholar 

  53. Hammer GD, Tyrrell JB, Lamborn KR, Applebury CB, Hannegan ET, Bell S, Rahl R, Lu A, Wilson CB (2004) Transsphenoidal microsurgery for Cushing’s disease: initial outcome and long-term results. J Clin Endocrinol Metab 89:6348–6357

    Article  PubMed  CAS  Google Scholar 

  54. Lüdecke DK, Flitsch J, Knappe UJ, Saeger W (2001) Cushing’s disease: a surgical review. J Neurooncol 54:151–166

    Article  PubMed  Google Scholar 

  55. Bochicchio D, Losa M, Buchfelder M (1995) Factors influencing the immediate and late outcome of Cushing’s disease treated by transsphenoidal surgery: a retrospective study by the European Cushing’s Disease Survey Group. J Clin Endocrinol Metab 80:3114–3120

    Article  PubMed  CAS  Google Scholar 

  56. Trainer PJ, Lawrie HS, Verhelst J, Howlett TA, Lowe DG, Grossman AB, Savage MO, Afshar F, Besser GM (1993) Transsphenoidal resection in Cushing’s disease: undetectable serum cortisol as the definition of successful treatment. Clin Endocrinol 38:73–78

    CAS  Google Scholar 

  57. Ram Z, Nieman LK, Cutler GB Jr, Chrousos GP, Doppman JL, Oldfield EH (1994) Early repeat surgery for persistent Cushing’s disease. J Neurosurg 80:37–45

    Article  PubMed  CAS  Google Scholar 

  58. Becker G, Kocher M, Kortmann RD, Paulsen F, Jeremic B, Muller RP, Bamberg M (2002) Radiation therapy in the multimodal treatment approach of pituitary adenoma. Strahlenther Onkol 178:173–186

    Article  PubMed  Google Scholar 

  59. Minniti G, Traish D, Ashler S, Gonsalves A, Brada M (2005) Risk of second brain tumor after conservative surgery and radiotherapy for pituitary adenoma: update after additional 10 years. J Clin Endocrinol Metab 90:800–804

    Article  PubMed  CAS  Google Scholar 

  60. Mahmoud-Ashmed AS, Suh JH (2002) Radiation therapy for Cushing’s disease: a review. Pituitary 5:175–180

    Article  Google Scholar 

  61. Sharpe GF, Kendall-Taylor P, Prescott RW, Ross WM, Davison C, Watson MJ, Cook DB (1985) Pituitary function following megavoltage therapy for Cushing’s disease: long term follow up. Clin Endocrinol 22:169–177

    CAS  Google Scholar 

  62. Estrada J, Boronat M, Mielgo M, Magallon R, Millan I, Diez S, Lucas T, Barcelo B (1997) The long-term outcome of pituitary irradiation after unsuccessful transsphenoidal surgery in Cushing’s disease. N Engl J Med 336:172–177

    Article  PubMed  CAS  Google Scholar 

  63. Jennings AS, Liddle GW, Orth DN (1977) Results of treating childhood Cushing’s disease with pituitary irradiation. N Engl J Med 297:957–962

    Article  PubMed  CAS  Google Scholar 

  64. Sheehan JM, Vance ML, Sheehan JP, Ellegala DB, Laws ER Jr (2000) Radiosurgery for Cushing’s disease after failed trassphenoidal surgery. J Neurosurg 93:738–742

    Article  PubMed  CAS  Google Scholar 

  65. Hoybye C, Grenback E, Rahn T, Degerblad M, Thoren M, Hulting AL (2001) Adrenocorticotropic hormone-producing pituitary tumours: 12- to 22-year follow-up after treatment with stereotactic radiosurgery. Neurosurgery 49:284–291

    Article  PubMed  CAS  Google Scholar 

  66. Mitsumori M, Shrieve DC, Alexander E 3rd, Kaiser UB, Richardson GE, Black PM, Loeffler JS (1998) Initial clinical results of LINAC-based stereotactic radiosurgery and stereotactic radiotherapy for pituitary adenomas. Int J Radiat Oncol Biol Phys 42:573–580

    Article  PubMed  CAS  Google Scholar 

  67. Molinatti GM, Limone P, Porta M (1995) Treatment of Cushing’s disease by interstitial pituitary irradiation: short- and long-term follow-up. Panminerva Med 37:1–7

    PubMed  CAS  Google Scholar 

  68. Sandler LM, Richards NT, Carr DH, Mashiter K, Joplin GF (1987) Long term follow-up of patients with Cushing’s disease treated by interstitial irradiation. J Clin Endocrinol Metab 65:441–447

    PubMed  CAS  Google Scholar 

  69. Cavagnini F, Pecori Giraldi F (2006) In: DeGroot LJ, Jameson JL (eds), Adrenal causes of hypercortisolism. Endocrinology. Elsevier Saunders, Philadelphia, pp 2353–2386

  70. Imai T, Funahashi H, Tanaka Y, Tobinaga J, Wada M, Morita-Matsuyama T, Ohiso Y, Takagi H (1996) Adrenalectomy for treatment of Cushing’s syndrome: results in 122 patients and long-term follow-up studies. World J Surg 20:781–786

    Article  PubMed  CAS  Google Scholar 

  71. Welbourn RB (1985) Survival and causes of death after adrenalectomy for Cushing’s disease. Surgery 97:16–20

    PubMed  CAS  Google Scholar 

  72. Nieman LK (2002) Medical therapy of Cushing’s disease. Pituitary 5:77–82

    Article  PubMed  CAS  Google Scholar 

  73. Morris D, Grossman A (2002) The medical management of Cushing’s syndrome. Ann N Y Acad Sci 970:119–133

    PubMed  CAS  Google Scholar 

  74. Sonino N, Boscaro M (1999) Medical therapy for Cushing’s disease. Endocrinol Metab Clin North Am 28:211–222

    Article  PubMed  CAS  Google Scholar 

  75. Schulte HM, Benker G, Reinwein D, Sippell WG, Allolio B (1990) Infusion of low dose etomidate: correction of hypercortisolemia in patients with Cushing’s syndrome and dose-response relationship in normal subjects. J Clin Endocrinol Metab 70:1426–1430

    PubMed  CAS  Google Scholar 

  76. Kawai S, Ichikawa Y, Kaburaki J, Yoshida T (1999) 18 years mitotane therapy for intractable Cushing’s disease. Lancet 354:951

    PubMed  CAS  Google Scholar 

  77. Schteingart DE, Tsao HS, Taylor CI, McKenzie A, Victoria R, Therrien BA (1980) Sustained remission of Cushing’s disease with mitotane and pituitary irradiation. Ann Intern Med 92:613–619

    PubMed  CAS  Google Scholar 

  78. Chu JW, Matthias DF, Belanoff J, Schatzberg A, Hoffman AR, Feldman D (2001) Successful long-term treatment of refractory Cushing’s disease with high-dose mifepristone (RU486). J Clin Endocrinol Metab 86:3568–3573

    Article  PubMed  CAS  Google Scholar 

  79. Kelly PA, Samandouras G, Grossman AB, Afshar F, Besser GM, Jenkins PJ (2002) Neurosurgical treatment of Nelson’s syndrome. J Clin Endocrinol Metab 87:5465–5469

    Article  PubMed  CAS  Google Scholar 

  80. Dornhorst A, Jenkins JS, Lamberts SW, Abraham RR, Wynn V, Bechford U, Gillham B, Jones MT (1983) The evaluation of sodium valproate in the treatment of Nelson’s syndrome. J Clin Endocrinol Metab 56:985–991

    Article  PubMed  CAS  Google Scholar 

  81. Pivonello R, Faggiano A, Di Salle F, Filippella M, Lombardi G, Colao A (1999) Complete remission of Nelson’s syndrome after 1-year treatment with cabergoline. J Endocrinol Invest 22:860–865

    PubMed  CAS  Google Scholar 

  82. Casulari LA, Naves LA, Mello PA, Pereira Neto A, Papadia C (2004) Nelson’s syndrome: complete remission with cabergoline but not with bromocriptine or cyproheptadine treatment. Horm Res 62:300–305

    Article  PubMed  CAS  Google Scholar 

  83. Petrini L. Gasperi M, Pilosu R, Marcello A, Martino E (1994) Long-term treatment of Nelson’s syndrome by octreotide: a case report. J Endocrinol Invest 17:135–139

    Google Scholar 

  84. McCance DR, Besser M, Atkinson AB (1996) Assessment of cure after transsphenoidal surgery for Cushing’s disease. Clin Endocrinol 44:1–6

    Article  CAS  Google Scholar 

  85. Colombo P, Dall’Asta C, Barbetta L, Re T, Passini E, Faglia G, Ambrosi B (2000) Usefulness of the desmopressin test in the postoperative evaluation of patients with Cushing’s disease. Eur J Endocrinol 143:227–234

    Article  PubMed  CAS  Google Scholar 

  86. Vallette-Kasic S, Dufour H, Mugnier M, Trouillas J, Valdes-Socin H, Caron P, Morange S, Girard N, Grisoli F, Jaquet P, Brue T (2000) Markers of tumor invasion are major predictive factors for the long-term outcome of corticotroph microadenomas treated by transsphenoidal adenomectomy. Eur J Endocrinol 143:761–768

    Article  PubMed  CAS  Google Scholar 

  87. Davies JH, Storr HL, Davies K, Monson JP, Besser GM, Afshar F, Plowman PN, Grossman AB, Savage MO (2005) Final adult height and body mass index after cure of paediatric Cushing’s disease. Clin Endocrinol 62:466–472

    Article  CAS  Google Scholar 

  88. Kemink SA, Grotenhuis JA, De Vries J, Pieters GF, Hermus AR, Smals AG (2001) Management of Nelson’s syndrome: observations in fifteen patients. Clin Endocrinol 54:45–52

    Article  CAS  Google Scholar 

  89. Colao A, Pivonello R, Spiezia S, Faggiano A, Ferone D, Filippella M, Marzullo P, Cerbone G, Siciliani M, Lombardi G (1999) Persistence of increased cardiovascular risk in patients with Cushing’s disease after five years of successful cure. J Clin Endocrinol Metab 84:2664–2672

    Article  PubMed  CAS  Google Scholar 

  90. Manning PJ, Evans MC, Reid IR (1992) Normal bone density following cure of Cushing’s syndrome. Clin Endocrinol 36:229–234

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Cavagnini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Martin, M., Giraldi, F.P. & Cavagnini, F. Cushing’s disease. Pituitary 9, 279–287 (2006). https://doi.org/10.1007/s11102-006-0407-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11102-006-0407-6

Keywords

Navigation