Skip to main content

Cushing Disease: Diagnosis and Treatment

  • Chapter
  • First Online:
Pituitary Disorders of Childhood

Part of the book series: Contemporary Endocrinology ((COE))

Abstract

Pituitary corticotroph adenomas (causing Cushing disease, CD) are the most common cause of endogenous Cushing syndrome (CS) in children although their prevalence varies within age groups. The initial workup of a patient suspected to have CS involves the demonstration of hypercortisolemia and/or excess urinary free cortisol excretion, the loss of the normal circadian rhythm of cortisol production, and the lack of suppression of cortisol secretion after low-dose dexamethasone suppression test. The identification of the source of CS involves the measurement of the morning corticotropin (ACTH) levels, imaging studies (pituitary magnetic resonance imaging and adrenal gland computed tomography), and other tests, including high-dose dexamethasone suppression and corticotropin-releasing hormone (CRH) stimulation. The first-line management of CD is the transsphenoidal (TSS) resection of the pituitary adenoma. In cases where TSS fails, radiation and/or medical therapy and medical or surgical (bilateral) adrenalectomy may eventually lead to control of the hypercortisolemia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stratakis CA. Cushing syndrome in pediatrics. Endocrinol Metab Clin N Am. 2012;41(4):793–803.

    Google Scholar 

  2. Stratakis CA. Diagnosis and clinical genetics of Cushing syndrome in pediatrics. Endocrinol Metab Clin N Am. 2016;45(2):311–28.

    Google Scholar 

  3. More J, Young J, Reznik Y, Raverot G, Borson-Chazot F, Rohmer V, et al. Ectopic ACTH syndrome in children and adolescents. J Clin Endocrinol Metab. 2011;96(5):1213–22.

    CAS  PubMed  Google Scholar 

  4. Lodish M. Cushing’s syndrome in childhood: update on genetics, treatment, and outcomes. Curr Opin Endocrinol Diabetes Obes. 2015;22(1):48–54.

    PubMed  PubMed Central  Google Scholar 

  5. Karageorgiadis AS, Papadakis GZ, Biro J, Keil MF, Lyssikatos C, Quezado MM, et al. Ectopic adrenocorticotropic hormone and corticotropin-releasing hormone co-secreting tumors in children and adolescents causing Cushing syndrome: a diagnostic dilemma and how to solve it. J Clin Endocrinol Metab. 2015;100(1):141–8.

    CAS  PubMed  Google Scholar 

  6. Gkourogianni A, Lodish MB, Zilbermint M, Lyssikatos C, Belyavskaya E, Keil MF, et al. Death in pediatric Cushing syndrome is uncommon but still occurs. Eur J Pediatr. 2015;174(4):501–7.

    PubMed  Google Scholar 

  7. Dutta D, Shivaprasad KS, Ghosh S, Mukhopadhyay S, Chowdhury S. Iatrogenic Cushing’s syndrome following short-term intranasal steroid use. J Clin Res Pediatr Endocrinol. 2012;4(3):157–9.

    PubMed  PubMed Central  Google Scholar 

  8. Bulus AD, Andiran N, Kocak M. Cushing’s syndrome: hidden risk in usage of topical corticosteroids. J Pediatr Endocrinol Metab. 2014;27(9–10):977–81.

    PubMed  Google Scholar 

  9. Fukuhara D, Takiura T, Keino H, Okada AA, Yan K. Iatrogenic Cushing’s syndrome due to topical ocular glucocorticoid treatment. Pediatrics. 2017;139(2)

    Google Scholar 

  10. Magiakou MA, Mastorakos G, Chrousos GP. Final stature in patients with endogenous Cushing’s syndrome. J Clin Endocrinol Metab. 1994;79(4):1082–5.

    CAS  PubMed  Google Scholar 

  11. Magiakou MA, Mastorakos G, Oldfield EH, Gomez MT, Doppman JL, Cutler GB Jr, et al. Cushing’s syndrome in children and adolescents. Presentation, diagnosis, and therapy. N Engl J Med. 1994;331(10):629–36.

    CAS  PubMed  Google Scholar 

  12. Stratakis CA, Mastorakos G, Mitsiades NS, Mitsiades CS, Chrousos GP. Skin manifestations of Cushing disease in children and adolescents before and after the resolution of hypercortisolemia. Pediatr Dermatol. 1998;15(4):253–8.

    CAS  PubMed  Google Scholar 

  13. Afshari A, Ardeshirpour Y, Lodish MB, Gourgari E, Sinaii N, Keil M, et al. Facial plethora: modern technology for Quantifying an ancient clinical sign and its use in Cushing syndrome. J Clin Endocrinol Metab. 2015;100(10):3928–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Libuit LG, Karageorgiadis AS, Sinaii N, Nguyen May NM, Keil MF, Lodish MB, et al. A gender-dependent analysis of Cushing’s disease in childhood: pre- and postoperative follow-up. Clin Endocrinol. 2015;83(1):72–7.

    Google Scholar 

  15. Lodish MB, Hsiao HP, Serbis A, Sinaii N, Rothenbuhler A, Keil MF, et al. Effects of Cushing disease on bone mineral density in a pediatric population. J Pediatr. 2010;156(6):1001–5.

    PubMed  PubMed Central  Google Scholar 

  16. Tack LJ, Tatsi C, Stratakis CA, Lodish MB. Effects of glucocorticoids on bone: what we can learn from pediatric endogenous Cushing’s syndrome. Horm Metab Res. 2016;48(11):764–70.

    CAS  PubMed  Google Scholar 

  17. Scommegna S, Greening JP, Storr HL, Davies KM, Shaw NJ, Monson JP, et al. Bone mineral density at diagnosis and following successful treatment of pediatric Cushing’s disease. J Endocrinol Investig. 2005;28(3):231–5.

    CAS  Google Scholar 

  18. Oppong E, Cato AC. Effects of glucocorticoids in the immune system. Adv Exp Med Biol. 2015;872:217–33.

    CAS  PubMed  Google Scholar 

  19. Lodish MB, Sinaii N, Patronas N, Batista DL, Keil M, Samuel J, et al. Blood pressure in pediatric patients with Cushing syndrome. J Clin Endocrinol Metab. 2009;94(6):2002–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Nguyen JH, Lodish MB, Patronas NJ, Ugrasbul F, Keil MF, Roberts MD, et al. Extensive and largely reversible ischemic cerebral infarctions in a prepubertal child with hypertension and Cushing disease. J Clin Endocrinol Metab. 2009;94(1):1–2.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Rahman SH, Papadakis GZ, Keil MF, Faucz FR, Lodish MB, Stratakis CA. Kidney stones as an underrecognized clinical sign in pediatric Cushing disease. J Pediatr. 2016;170:273–7.e1.

    PubMed  Google Scholar 

  22. Thijssen JH, van den Berg JH, Adlercreutz H, Gijzen AH, de Jong FH, Meijer JC, et al. The determination of cortisol in human plasma: evaluation and comparison of seven assays. Clin Chim Acta. 1980;100(1):39–46.

    CAS  PubMed  Google Scholar 

  23. Caldarella AM, Reardon GE, Canalis E. Analysis for cortisol in serum by liquid chromatography. Clin Chem. 1982;28(3):538–43.

    CAS  PubMed  Google Scholar 

  24. Hawley JM, Keevil BG. Endogenous glucocorticoid analysis by liquid chromatography-tandem mass spectrometry in routine clinical laboratories. J Steroid Biochem Mol Biol. 2016;162:27–40.

    CAS  PubMed  Google Scholar 

  25. Djedovic NK, Rainbow SJ. Detection of synthetic glucocorticoids by liquid chromatography-tandem mass spectrometry in patients being investigated for Cushing’s syndrome. Ann Clin Biochem. 2011;48(Pt 6):542–9.

    CAS  PubMed  Google Scholar 

  26. Fong BM, Tam S, Leung KS. Improved liquid chromatography-tandem mass spectrometry method in clinical utility for the diagnosis of Cushing’s syndrome. Anal Bioanal Chem. 2010;396(2):783–90.

    CAS  PubMed  Google Scholar 

  27. El-Farhan N, Rees DA, Evans C. Measuring cortisol in serum, urine and saliva – are our assays good enough? Ann Clin Biochem. 2017;54(3):308–22.

    CAS  PubMed  Google Scholar 

  28. Tractenberg RE, Jonklaas J, Soldin SJ. Agreement of immunoassay and tandem mass spectrometry in the analysis of cortisol and free t4: interpretation and implications for clinicians. Int J Anal Chem. 2010;2010

    Google Scholar 

  29. Sanchez-Guijo A, Hartmann MF, Shi L, Remer T, Wudy SA. Determination of free cortisol and free cortisone in human urine by on-line turbulent flow chromatography coupled to fused-core chromatography-tandem mass spectrometry (TFC-HPLC-MS/MS). Anal Bioanal Chem. 2014;406(3):793–801.

    CAS  PubMed  Google Scholar 

  30. Mezzullo M, Fanelli F, Fazzini A, Gambineri A, Vicennati V, Di Dalmazi G, et al. Validation of an LC-MS/MS salivary assay for glucocorticoid status assessment: evaluation of the diurnal fluctuation of cortisol and cortisone and of their association within and between serum and saliva. J Steroid Biochem Mol Biol. 2016;163:103–12.

    CAS  PubMed  Google Scholar 

  31. Ching SY, Lim EM, Beilby J, Bhagat C, Rossi E, Walsh JP, et al. Urine free cortisol analysis by automated immunoassay and high-performance liquid chromatography for the investigation of Cushing’s syndrome. Ann Clin Biochem. 2006;43(Pt 5):402–7.

    CAS  PubMed  Google Scholar 

  32. Lentjes EG, Romijn FH. Temperature-dependent cortisol distribution among the blood compartments in man. J Clin Endocrinol Metab. 1999;84(2):682–7.

    CAS  PubMed  Google Scholar 

  33. Dunn JF, Nisula BC, Rodbard D. Transport of steroid hormones: binding of 21 endogenous steroids to both testosterone-binding globulin and corticosteroid-binding globulin in human plasma. J Clin Endocrinol Metab. 1981;53(1):58–68.

    CAS  PubMed  Google Scholar 

  34. Sandberg AA, Woodruff M, Rosenthal H, Nienhouse S, Slaunwhite WR Jr. Transcortin: a corticosteroid-binding protein of plasma. Vii. Half-life in normal and estrogen-treated subjects. J Clin Invest. 1964;43:461–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Meulenberg PM, Ross HA, Swinkels LM, Benraad TJ. The effect of oral contraceptives on plasma-free and salivary cortisol and cortisone. Clin Chim Acta. 1987;165(2–3):379–85.

    CAS  PubMed  Google Scholar 

  36. Klose M, Lange M, Rasmussen AK, Skakkebaek NE, Hilsted L, Haug E, et al. Factors influencing the adrenocorticotropin test: role of contemporary cortisol assays, body composition, and oral contraceptive agents. J Clin Endocrinol Metab. 2007;92(4):1326–33.

    CAS  PubMed  Google Scholar 

  37. Nieman LK, Biller BM, Findling JW, Newell-Price J, Savage MO, Stewart PM, et al. The diagnosis of Cushing’s syndrome: an Endocrine Society Clinical Practice Guideline. J Clin Endocrinol Metab. 2008;93(5):1526–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Hamrahian AH, Oseni TS, Arafah BM. Measurements of serum free cortisol in critically ill patients. N Engl J Med. 2004;350(16):1629–38.

    CAS  PubMed  Google Scholar 

  39. Tschop M, Lahner H, Feldmeier H, Grasberger H, Morrison KM, Janssen OE, et al. Effects of growth hormone replacement therapy on levels of cortisol and cortisol-binding globulin in hypopituitary adults. Eur J Endocrinol. 2000;143(6):769–73.

    CAS  PubMed  Google Scholar 

  40. Fernandez-Real JM, Pugeat M, Grasa M, Broch M, Vendrell J, Brun J, et al. Serum corticosteroid-binding globulin concentration and insulin resistance syndrome: a population study. J Clin Endocrinol Metab. 2002;87(10):4686–90.

    CAS  PubMed  Google Scholar 

  41. Batista DL, Riar J, Keil M, Stratakis CA. Diagnostic tests for children who are referred for the investigation of Cushing syndrome. Pediatrics. 2007;120(3):e575–86.

    PubMed  Google Scholar 

  42. Shapiro L, Elahi S, Riddoch F, Perry LA, Martin L, Akker SA, et al. Investigation for Paediatric Cushing’s syndrome using twenty-four-hour urinary free cortisol determination. Horm Res Paediatr. 2016;86(1):21–6.

    CAS  PubMed  Google Scholar 

  43. Mericq MV, Cutler GB Jr. High fluid intake increases urine free cortisol excretion in normal subjects. J Clin Endocrinol Metab. 1998;83(2):682–4.

    CAS  PubMed  Google Scholar 

  44. Luger A, Deuster PA, Kyle SB, Gallucci WT, Montgomery LC, Gold PW, et al. Acute hypothalamic-pituitary-adrenal responses to the stress of treadmill exercise. Physiologic adaptations to physical training. N Engl J Med. 1987;316(21):1309–15.

    CAS  PubMed  Google Scholar 

  45. Badrick E, Kirschbaum C, Kumari M. The relationship between smoking status and cortisol secretion. J Clin Endocrinol Metab. 2007;92(3):819–24.

    CAS  PubMed  Google Scholar 

  46. Thayer JF, Hall M, Sollers JJ 3rd, Fischer JE. Alcohol use, urinary cortisol, and heart rate variability in apparently healthy men: evidence for impaired inhibitory control of the HPA axis in heavy drinkers. Int J Psychophysiol. 2006;59(3):244–50.

    PubMed  Google Scholar 

  47. Minick MC. Cortisol and cortisone excretion from infancy to adult life. Metabolism. 1966;15(4):359–63.

    CAS  PubMed  Google Scholar 

  48. Remer T, Maser-Gluth C, Wudy SA. Glucocorticoid measurements in health and disease--metabolic implications and the potential of 24-h urine analyses. Mini Rev Med Chem. 2008;8(2):153–70.

    CAS  PubMed  Google Scholar 

  49. Bertrand PV, Rudd BT, Weller PH, Day AJ. Free cortisol and creatinine in urine of healthy children. Clin Chem. 1987;33(11):2047–51.

    CAS  PubMed  Google Scholar 

  50. Newell-Price J, Bertagna X, Grossman AB, Nieman LK. Cushing’s syndrome. Lancet. 2006;367(9522):1605–17.

    CAS  PubMed  Google Scholar 

  51. Yanovski JA, Cutler GB Jr. Glucocorticoid action and the clinical features of Cushing’s syndrome. Endocrinol Metab Clin N Am. 1994;23(3):487–509.

    CAS  Google Scholar 

  52. Arnaldi G, Angeli A, Atkinson AB, Bertagna X, Cavagnini F, Chrousos GP, et al. Diagnosis and complications of Cushing’s syndrome: a consensus statement. J Clin Endocrinol Metab. 2003;88(12):5593–602.

    CAS  PubMed  Google Scholar 

  53. Shi L, Wudy SA, Maser-Gluth C, Hartmann MF, Remer T. Urine volume dependency of specific dehydroepiandrosterone (DHEA) and cortisol metabolites in healthy children. Steroids. 2011;76(1–2):140–4.

    CAS  PubMed  Google Scholar 

  54. Rosmalen JG, Kema IP, Wust S, van der Ley C, Visser ST, Snieder H, et al. 24 h urinary free cortisol in large-scale epidemiological studies: short-term and long-term stability and sources of variability. Psychoneuroendocrinology. 2014;47:10–6.

    CAS  PubMed  Google Scholar 

  55. Shi L, Maser-Gluth C, Remer T. Daily urinary free cortisol and cortisone excretion is associated with urine volume in healthy children. Steroids. 2008;73(14):1446–51.

    CAS  PubMed  Google Scholar 

  56. Issa BG, Page MD, Read G, John R, Douglas-Jones A, Scanlon MF. Undetectable urinary free cortisol concentrations in a case of Cushing’s disease. Eur J Endocrinol. 1999;140(2):148–51.

    CAS  PubMed  Google Scholar 

  57. Chan KC, Lit LC, Law EL, Tai MH, Yung CU, Chan MH, et al. Diminished urinary free cortisol excretion in patients with moderate and severe renal impairment. Clin Chem. 2004;50(4):757–9.

    CAS  PubMed  Google Scholar 

  58. Wood PJ, Barth JH, Freedman DB, Perry L, Sheridan B. Evidence for the low dose dexamethasone suppression test to screen for Cushing’s syndrome – recommendations for a protocol for biochemistry laboratories. Ann Clin Biochem. 1997;34(Pt 3):222–9.

    CAS  PubMed  Google Scholar 

  59. Dias R, Storr HL, Perry LA, Isidori AM, Grossman AB, Savage MO. The discriminatory value of the low-dose dexamethasone suppression test in the investigation of paediatric Cushing’s syndrome. Horm Res. 2006;65(3):159–62.

    CAS  PubMed  Google Scholar 

  60. Savage MO, Lienhardt A, Lebrethon MC, Johnston LB, Huebner A, Grossman AB, et al. Cushing’s disease in childhood: presentation, investigation, treatment and long-term outcome. Horm Res. 2001;55(Suppl 1):24–30.

    CAS  PubMed  Google Scholar 

  61. Kyriazopoulou V, Vagenakis AG. Abnormal overnight dexamethasone suppression test in subjects receiving rifampicin therapy. J Clin Endocrinol Metab. 1992;75(1):315–7.

    CAS  PubMed  Google Scholar 

  62. Ueland GA, Methlie P, Kellmann R, Bjorgaas M, Asvold BO, Thorstensen K, et al. Simultaneous assay of cortisol and dexamethasone improved diagnostic accuracy of the dexamethasone suppression test. Eur J Endocrinol. 2017;176(6):705–13.

    CAS  PubMed  Google Scholar 

  63. Lim CT, Grossman A, Khoo B. Normal physiology of ACTH and GH release in the hypothalamus and anterior pituitary in man. In: De Groot LJ, Chrousos G, Dungan K, Feingold KR, Grossman A, Hershman JM, et al., editors. Endotext. South Dartmouth: MDText.com, Inc.; 2000.

    Google Scholar 

  64. Buckley TM, Schatzberg AF. On the interactions of the hypothalamic-pituitary-adrenal (HPA) axis and sleep: normal HPA axis activity and circadian rhythm, exemplary sleep disorders. J Clin Endocrinol Metab. 2005;90(5):3106–14.

    CAS  PubMed  Google Scholar 

  65. Newell-Price J, Trainer P, Perry L, Wass J, Grossman A, Besser M. A single sleeping midnight cortisol has 100% sensitivity for the diagnosis of Cushing’s syndrome. Clin Endocrinol. 1995;43(5):545–50.

    CAS  Google Scholar 

  66. John M, Lila AR, Bandgar T, Menon PS, Shah NS. Diagnostic efficacy of midnight cortisol and midnight ACTH in the diagnosis and localisation of Cushing’s syndrome. Pituitary. 2010;13(1):48–53.

    CAS  PubMed  Google Scholar 

  67. Crapo L. Cushing’s syndrome: a review of diagnostic tests. Metabolism. 1979;28(9):955–77.

    CAS  PubMed  Google Scholar 

  68. Papanicolaou DA, Yanovski JA, Cutler GB Jr, Chrousos GP, Nieman LK. A single midnight serum cortisol measurement distinguishes Cushing’s syndrome from pseudo-Cushing states. J Clin Endocrinol Metab. 1998;83(4):1163–7.

    CAS  PubMed  Google Scholar 

  69. Tirosh A, Lodish MB, Lyssikatos C, Belyavskaya E, Papadakis GZ, Stratakis CA. Circadian plasma cortisol measurements reflect severity of Hypercortisolemia in children with different etiologies of endogenous Cushing syndrome. Horm Res Paediatr. 2017;87(5):295–300.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Peters JR, Walker RF, Riad-Fahmy D, Hall R. Salivary cortisol assays for assessing pituitary-adrenal reserve. Clin Endocrinol. 1982;17(6):583–92.

    CAS  Google Scholar 

  71. Martinelli CE Jr, Sader SL, Oliveira EB, Daneluzzi JC, Moreira AC. Salivary cortisol for screening of Cushing’s syndrome in children. Clin Endocrinol. 1999;51(1):67–71.

    Google Scholar 

  72. Gafni RI, Papanicolaou DA, Nieman LK. Nighttime salivary cortisol measurement as a simple, noninvasive, outpatient screening test for Cushing’s syndrome in children and adolescents. J Pediatr. 2000;137(1):30–5.

    CAS  PubMed  Google Scholar 

  73. Trilck M, Flitsch J, Ludecke DK, Jung R, Petersenn S. Salivary cortisol measurement--a reliable method for the diagnosis of Cushing’s syndrome. Exp Clin Endocrinol Diabetes. 2005;113(4):225–30.

    CAS  PubMed  Google Scholar 

  74. Lacroix A, Feelders RA, Stratakis CA, Nieman LK. Cushing’s syndrome. Lancet. 2015;386(9996):913–27.

    CAS  PubMed  Google Scholar 

  75. Raff H, Findling JW. A physiologic approach to diagnosis of the Cushing syndrome. Ann Intern Med. 2003;138(12):980–91.

    PubMed  Google Scholar 

  76. Nieman LK, Oldfield EH, Wesley R, Chrousos GP, Loriaux DL, Cutler GB Jr. A simplified morning ovine corticotropin-releasing hormone stimulation test for the differential diagnosis of adrenocorticotropin-dependent Cushing’s syndrome. J Clin Endocrinol Metab. 1993;77(5):1308–12.

    CAS  PubMed  Google Scholar 

  77. Barbot M, Trementino L, Zilio M, Ceccato F, Albiger N, Daniele A, et al. Second-line tests in the differential diagnosis of ACTH-dependent Cushing’s syndrome. Pituitary. 2016;19(5):488–95.

    CAS  PubMed  Google Scholar 

  78. Nieman LK, Chrousos GP, Oldfield EH, Avgerinos PC, Cutler GB Jr, Loriaux DL. The ovine corticotropin-releasing hormone stimulation test and the dexamethasone suppression test in the differential diagnosis of Cushing’s syndrome. Ann Intern Med. 1986;105(6):862–7.

    CAS  PubMed  Google Scholar 

  79. Chrousos GP, Schulte HM, Oldfield EH, Gold PW, Cutler GB Jr, Loriaux DL. The corticotropin-releasing factor stimulation test. an aid in the evaluation of patients with Cushing’s syndrome. N Engl J Med. 1984;310(10):622–6.

    CAS  PubMed  Google Scholar 

  80. Rotman-Pikielny P, Patronas N, Papanicolaou DA. Pituitary apoplexy induced by corticotrophin-releasing hormone in a patient with Cushing’s disease. Clin Endocrinol. 2003;58(5):545–9.

    Google Scholar 

  81. Gold PW, Loriaux DL, Roy A, Kling MA, Calabrese JR, Kellner CH, et al. Responses to corticotropin-releasing hormone in the hypercortisolism of depression and Cushing’s disease. Pathophysiologic and diagnostic implications. N Engl J Med. 1986;314(21):1329–35.

    CAS  PubMed  Google Scholar 

  82. Grossman AB, Howlett TA, Perry L, Coy DH, Savage MO, Lavender P, et al. CRF in the differential diagnosis of Cushing’s syndrome: a comparison with the dexamethasone suppression test. Clin Endocrinol. 1988;29(2):167–78.

    CAS  Google Scholar 

  83. Yanovski JA, Cutler GB Jr, Chrousos GP, Nieman LK. Corticotropin-releasing hormone stimulation following low-dose dexamethasone administration. A new test to distinguish Cushing’s syndrome from pseudo-Cushing's states. JAMA. 1993;269(17):2232–8.

    CAS  PubMed  Google Scholar 

  84. Dichek HL, Nieman LK, Oldfield EH, Pass HI, Malley JD, Cutler GB Jr. A comparison of the standard high dose dexamethasone suppression test and the overnight 8-mg dexamethasone suppression test for the differential diagnosis of adrenocorticotropin-dependent Cushing’s syndrome. J Clin Endocrinol Metab. 1994;78(2):418–22.

    CAS  PubMed  Google Scholar 

  85. Doppman JL, Oldfield E, Krudy AG, Chrousos GP, Schulte HM, Schaaf M, et al. Petrosal sinus sampling for Cushing syndrome: anatomical and technical considerations. Work in progress. Radiology. 1984;150(1):99–103.

    CAS  PubMed  Google Scholar 

  86. Oldfield EH, Doppman JL, Nieman LK, Chrousos GP, Miller DL, Katz DA, et al. Petrosal sinus sampling with and without corticotropin-releasing hormone for the differential diagnosis of Cushing’s syndrome. N Engl J Med. 1991;325(13):897–905.

    CAS  PubMed  Google Scholar 

  87. Oldfield EH, Chrousos GP, Schulte HM, Schaaf M, McKeever PE, Krudy AG, et al. Preoperative lateralization of ACTH-secreting pituitary microadenomas by bilateral and simultaneous inferior petrosal venous sinus sampling. N Engl J Med. 1985;312(2):100–3.

    CAS  PubMed  Google Scholar 

  88. Batista D, Gennari M, Riar J, Chang R, Keil MF, Oldfield EH, et al. An assessment of petrosal sinus sampling for localization of pituitary microadenomas in children with Cushing disease. J Clin Endocrinol Metab. 2006;91(1):221–4.

    CAS  PubMed  Google Scholar 

  89. Tanriover N, Kucukyuruk B, Tuzgen S, Comunoglu N, Kizilkilic O, Gazioglu N. Guidewire breakage during cavernous sinus sampling: a rare complication and its treatment. World Neurosurg. 2017;107:1052.e1–6.

    Google Scholar 

  90. Wagner-Bartak NA, Baiomy A, Habra MA, Mukhi SV, Morani AC, Korivi BR, et al. Cushing syndrome: diagnostic workup and imaging features, with clinical and pathologic correlation. AJR Am J Roentgenol. 2017;209(1):19–32.

    PubMed  Google Scholar 

  91. Batista D, Courkoutsakis NA, Oldfield EH, Griffin KJ, Keil M, Patronas NJ, et al. Detection of adrenocorticotropin-secreting pituitary adenomas by magnetic resonance imaging in children and adolescents with Cushing disease. J Clin Endocrinol Metab. 2005;90(9):5134–40.

    CAS  PubMed  Google Scholar 

  92. Roelfsema F, Biermasz NR, Pereira AM. Clinical factors involved in the recurrence of pituitary adenomas after surgical remission: a structured review and meta-analysis. Pituitary. 2012;15(1):71–83.

    PubMed  Google Scholar 

  93. Batista DL, Oldfield EH, Keil MF, Stratakis CA. Postoperative testing to predict recurrent Cushing disease in children. J Clin Endocrinol Metab. 2009;94(8):2757–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Zhang C, Ding X, Lu Y, Hu L, Hu G. Cerebrospinal fluid rhinorrhoea following transsphenoidal surgery for pituitary adenoma: experience in a Chinese Centre. Acta Otorhinolaryngol Ital. 2017;37(4):303–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Bridges KJ, Li R, Fleseriu M, Cetas JS. Candida meningitis after transsphenoidal surgery: a single institution case-series and literature review. World Neurosurg. 2017;108:41–9.

    PubMed  Google Scholar 

  96. Pledger CL, Elzoghby MA, Oldfield EH, Payne SC, Jane JA Jr. Prospective comparison of sinonasal outcomes after microscopic sublabial or endoscopic endonasal transsphenoidal surgery for nonfunctioning pituitary adenomas. J Neurosurg. 2016;125(2):323–33.

    PubMed  Google Scholar 

  97. Katznelson L. Bilateral adrenalectomy for Cushing’s disease. Pituitary. 2015;18(2):269–73.

    CAS  PubMed  Google Scholar 

  98. Ritzel K, Beuschlein F, Mickisch A, Osswald A, Schneider HJ, Schopohl J, et al. Clinical review: outcome of bilateral adrenalectomy in Cushing’s syndrome: a systematic review. J Clin Endocrinol Metab. 2013;98(10):3939–48.

    CAS  PubMed  Google Scholar 

  99. Graffeo CS, Perry A, Carlstrom LP, Meyer FB, Atkinson JLD, Erickson D, et al. Characterizing and predicting the Nelson-Salassa syndrome. J Neurosurg. 2017;127(6):1277–87.

    PubMed  Google Scholar 

  100. Hensen J, Henig A, Fahlbusch R, Meyer M, Boehnert M, Buchfelder M. Prevalence, predictors and patterns of postoperative polyuria and hyponatraemia in the immediate course after transsphenoidal surgery for pituitary adenomas. Clin Endocrinol. 1999;50(4):431–9.

    CAS  Google Scholar 

  101. Prete A, Corsello SM, Salvatori R. Current best practice in the management of patients after pituitary surgery. Ther Adv Endocrinol Metab. 2017;8(3):33–48.

    PubMed  PubMed Central  Google Scholar 

  102. Devoe DJ, Miller WL, Conte FA, Kaplan SL, Grumbach MM, Rosenthal SM, et al. Long-term outcome in children and adolescents after transsphenoidal surgery for Cushing’s disease. J Clin Endocrinol Metab. 1997;82(10):3196–202.

    CAS  PubMed  Google Scholar 

  103. Biller BM, Grossman AB, Stewart PM, Melmed S, Bertagna X, Bertherat J, et al. Treatment of adrenocorticotropin-dependent Cushing’s syndrome: a consensus statement. J Clin Endocrinol Metab. 2008;93(7):2454–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Prete A, Paragliola RM, Bottiglieri F, Rota CA, Pontecorvi A, Salvatori R, et al. Factors predicting the duration of adrenal insufficiency in patients successfully treated for Cushing disease and nonmalignant primary adrenal Cushing syndrome. Endocrine. 2017;55(3):969–80.

    CAS  PubMed  Google Scholar 

  105. Lodish M, Dunn SV, Sinaii N, Keil MF, Stratakis CA. Recovery of the hypothalamic-pituitary-adrenal axis in children and adolescents after surgical cure of Cushing’s disease. J Clin Endocrinol Metab. 2012;97(5):1483–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Stratakis CA, Mastorakos G, Magiakou MA, Papavasiliou E, Oldfield EH, Chrousos GP. Thyroid function in children with Cushing’s disease before and after transsphenoidal surgery. J Pediatr. 1997;131(6):905–9.

    CAS  PubMed  Google Scholar 

  107. Magiakou MA, Mastorakos G, Gomez MT, Rose SR, Chrousos GP. Suppressed spontaneous and stimulated growth hormone secretion in patients with Cushing’s disease before and after surgical cure. J Clin Endocrinol Metab. 1994;78(1):131–7.

    CAS  PubMed  Google Scholar 

  108. Davies JH, Storr HL, Davies K, Monson JP, Besser GM, Afshar F, et al. Final adult height and body mass index after cure of paediatric Cushing’s disease. Clin Endocrinol. 2005;62(4):466–72.

    CAS  Google Scholar 

  109. Esposito F, Dusick JR, Cohan P, Moftakhar P, McArthur D, Wang C, et al. Clinical review: early morning cortisol levels as a predictor of remission after transsphenoidal surgery for Cushing’s disease. J Clin Endocrinol Metab. 2006;91(1):7–13.

    CAS  PubMed  Google Scholar 

  110. Trainer PJ, Lawrie HS, Verhelst J, Howlett TA, Lowe DG, Grossman AB, et al. Transsphenoidal resection in Cushing’s disease: undetectable serum cortisol as the definition of successful treatment. Clin Endocrinol. 1993;38(1):73–8.

    CAS  Google Scholar 

  111. Pendharkar AV, Sussman ES, Ho AL, Hayden Gephart MG, Katznelson L. Cushing’s disease: predicting long-term remission after surgical treatment. Neurosurg Focus. 2015;38(2):E13.

    PubMed  Google Scholar 

  112. Avgerinos PC, Chrousos GP, Nieman LK, Oldfield EH, Loriaux DL, Cutler GB Jr. The corticotropin-releasing hormone test in the postoperative evaluation of patients with Cushing’s syndrome. J Clin Endocrinol Metab. 1987;65(5):906–13.

    CAS  PubMed  Google Scholar 

  113. Lyman CA, Walsh TJ. Systemically administered antifungal agents. A review of their clinical pharmacology and therapeutic applications. Drugs. 1992;44(1):9–35.

    CAS  PubMed  Google Scholar 

  114. Engelhardt D, Dorr G, Jaspers C, Knorr D. Ketoconazole blocks cortisol secretion in man by inhibition of adrenal 11 beta-hydroxylase. Klin Wochenschr. 1985;63(13):607–12.

    CAS  PubMed  Google Scholar 

  115. DiMattina M, Maronian N, Ashby H, Loriaux DL, Albertson BD. Ketoconazole inhibits multiple steroidogenic enzymes involved in androgen biosynthesis in the human ovary. Fertil Steril. 1988;49(1):62–5.

    CAS  PubMed  Google Scholar 

  116. Castinetti F, Guignat L, Giraud P, Muller M, Kamenicky P, Drui D, et al. Ketoconazole in Cushing’s disease: is it worth a try? J Clin Endocrinol Metab. 2014;99(5):1623–30.

    CAS  PubMed  Google Scholar 

  117. Moncet D, Morando DJ, Pitoia F, Katz SB, Rossi MA, Bruno OD. Ketoconazole therapy: an efficacious alternative to achieve eucortisolism in patients with Cushing’s syndrome. Medicina (B Aires). 2007;67(1):26–31.

    CAS  Google Scholar 

  118. Castinetti F, Morange I, Jaquet P, Conte-Devolx B, Brue T. Ketoconazole revisited: a preoperative or postoperative treatment in Cushing’s disease. Eur J Endocrinol. 2008;158(1):91–9.

    CAS  PubMed  Google Scholar 

  119. Tabarin A, Navarranne A, Guerin J, Corcuff JB, Parneix M, Roger P. Use of ketoconazole in the treatment of Cushing’s disease and ectopic ACTH syndrome. Clin Endocrinol. 1991;34(1):63–9.

    CAS  Google Scholar 

  120. McCance DR, Hadden DR, Kennedy L, Sheridan B, Atkinson AB. Clinical experience with ketoconazole as a therapy for patients with Cushing’s syndrome. Clin Endocrinol. 1987;27(5):593–9.

    CAS  Google Scholar 

  121. Engelhardt D, Weber MM. Therapy of Cushing’s syndrome with steroid biosynthesis inhibitors. J Steroid Biochem Mol Biol. 1994;49(4–6):261–7.

    CAS  PubMed  Google Scholar 

  122. Zollner E, Delport S, Bonnici F. Fatal liver failure due to ketoconazole treatment of a girl with Cushing’s syndrome. J Pediatr Endocrinol Metab. 2001;14(3):335–8.

    CAS  PubMed  Google Scholar 

  123. Findor JA, Sorda JA, Igartua EB, Avagnina A. Ketoconazole-induced liver damage. Medicina (B Aires). 1998;58(3):277–81.

    CAS  PubMed  Google Scholar 

  124. Salvatori R DA, Geer EB, Koziol T, Jorkasky D. An open-label study to assess the safety and efficacy of levoketoconazole (COR-003) in the treatment of endogenous Cushing’s syndrome. In: Adrenal tumors, glucocorticoid regulation and action (posters). p. FRI-376–FRI-376. doi:101210/endo-meetings AHPAA5FRI-376. 2015.

    Google Scholar 

  125. Carballeira A, Fishman LM, Jacobi JD. Dual sites of inhibition by metyrapone of human adrenal steroidogenesis: correlation of in vivo and in vitro studies. J Clin Endocrinol Metab. 1976;42(4):687–95.

    CAS  PubMed  Google Scholar 

  126. Daniel E, Aylwin S, Mustafa O, Ball S, Munir A, Boelaert K, et al. Effectiveness of metyrapone in treating Cushing’s syndrome: a retrospective multicenter study in 195 patients. J Clin Endocrinol Metab. 2015;100(11):4146–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Verhelst JA, Trainer PJ, Howlett TA, Perry L, Rees LH, Grossman AB, et al. Short and long-term responses to metyrapone in the medical management of 91 patients with Cushing’s syndrome. Clin Endocrinol. 1991;35(2):169–78.

    CAS  Google Scholar 

  128. Daniel E, Newell-Price JD. Therapy of endocrine disease: steroidogenesis enzyme inhibitors in Cushing’s syndrome. Eur J Endocrinol. 2015;172(6):R263–80.

    CAS  PubMed  Google Scholar 

  129. Strosberg JR, Hammer GD, Doherty GM. Management of adrenocortical carcinoma. J Natl Compr Cancer Netw. 2009;7(7):752–8; quiz 9.

    CAS  Google Scholar 

  130. Terzolo M, Angeli A, Fassnacht M, Daffara F, Tauchmanova L, Conton PA, et al. Adjuvant mitotane treatment for adrenocortical carcinoma. N Engl J Med. 2007;356(23):2372–80.

    CAS  PubMed  Google Scholar 

  131. Young RB, Bryson MJ, Sweat ML, Street JC. Complexing of DDT and o,p’DDD with adrenal cytochrome P-450 hydroxylating systems. J Steroid Biochem. 1973;4(6):585–91.

    CAS  PubMed  Google Scholar 

  132. Sharma ST, Nieman LK. Prolonged remission after long-term treatment with steroidogenesis inhibitors in Cushing’s syndrome caused by ectopic ACTH secretion. Eur J Endocrinol. 2012;166(3):531–6.

    CAS  PubMed  Google Scholar 

  133. Schteingart DE, Tsao HS, Taylor CI, McKenzie A, Victoria R, Therrien BA. Sustained remission of Cushing’s disease with mitotane and pituitary irradiation. Ann Intern Med. 1980;92(5):613–9.

    CAS  PubMed  Google Scholar 

  134. Baudry C, Coste J, Bou Khalil R, Silvera S, Guignat L, Guibourdenche J, et al. Efficiency and tolerance of mitotane in Cushing’s disease in 76 patients from a single center. Eur J Endocrinol. 2012;167(4):473–81.

    CAS  PubMed  Google Scholar 

  135. Kamenicky P, Droumaguet C, Salenave S, Blanchard A, Jublanc C, Gautier JF, et al. Mitotane, metyrapone, and ketoconazole combination therapy as an alternative to rescue adrenalectomy for severe ACTH-dependent Cushing’s syndrome. J Clin Endocrinol Metab. 2011;96(9):2796–804.

    CAS  PubMed  Google Scholar 

  136. Fleseriu M, Molitch ME, Gross C, Schteingart DE, Vaughan TB 3rd, Biller BM. A new therapeutic approach in the medical treatment of Cushing’s syndrome: glucocorticoid receptor blockade with mifepristone. Endocr Pract. 2013;19(2):313–26.

    PubMed  Google Scholar 

  137. Bertagna X, Bertagna C, Luton JP, Husson JM, Girard F. The new steroid analog RU 486 inhibits glucocorticoid action in man. J Clin Endocrinol Metab. 1984;59(1):25–8.

    CAS  PubMed  Google Scholar 

  138. Katznelson L, Loriaux DL, Feldman D, Braunstein GD, Schteingart DE, Gross C. Global clinical response in Cushing’s syndrome patients treated with mifepristone. Clin Endocrinol. 2014;80(4):562–9.

    CAS  Google Scholar 

  139. Wallia A, Colleran K, Purnell JQ, Gross C, Molitch ME. Improvement in insulin sensitivity during mifepristone treatment of Cushing syndrome: early and late effects. Diabetes Care. 2013;36(9):e147–8.

    PubMed  PubMed Central  Google Scholar 

  140. Fleseriu M, Biller BM, Findling JW, Molitch ME, Schteingart DE, Gross C, et al. Mifepristone, a glucocorticoid receptor antagonist, produces clinical and metabolic benefits in patients with Cushing’s syndrome. J Clin Endocrinol Metab. 2012;97(6):2039–49.

    CAS  PubMed  Google Scholar 

  141. Yuen KC, Williams G, Kushner H, Nguyen D. Association between mifepristone dose, efficacy, and tolerability in patients with Cushing syndrome. Endocr Pract. 2015;21(10):1087–92.

    PubMed  Google Scholar 

  142. Castinetti F, Fassnacht M, Johanssen S, Terzolo M, Bouchard P, Chanson P, et al. Merits and pitfalls of mifepristone in Cushing’s syndrome. Eur J Endocrinol. 2009;160(6):1003–10.

    CAS  PubMed  Google Scholar 

  143. Sun L, Coy DH. Somatostatin and its analogs. Curr Drug Targets. 2016;17(5):529–37.

    CAS  PubMed  Google Scholar 

  144. Ambrosi B, Bochicchio D, Fadin C, Colombo P, Faglia G. Failure of somatostatin and octreotide to acutely affect the hypothalamic-pituitary-adrenal function in patients with corticotropin hypersecretion. J Endocrinol Investig. 1990;13(3):257–61.

    CAS  Google Scholar 

  145. Stalla GK, Brockmeier SJ, Renner U, Newton C, Buchfelder M, Stalla J, et al. Octreotide exerts different effects in vivo and in vitro in Cushing’s disease. Eur J Endocrinol. 1994;130(2):125–31.

    CAS  PubMed  Google Scholar 

  146. Bruns C, Lewis I, Briner U, Meno-Tetang G, Weckbecker G. SOM230: a novel somatostatin peptidomimetic with broad somatotropin release inhibiting factor (SRIF) receptor binding and a unique antisecretory profile. Eur J Endocrinol. 2002;146(5):707–16.

    CAS  PubMed  Google Scholar 

  147. van der Hoek J, Waaijers M, van Koetsveld PM, Sprij-Mooij D, Feelders RA, Schmid HA, et al. Distinct functional properties of native somatostatin receptor subtype 5 compared with subtype 2 in the regulation of ACTH release by corticotroph tumor cells. Am J Physiol Endocrinol Metab. 2005;289(2):E278–87.

    PubMed  Google Scholar 

  148. Colao A, Petersenn S, Newell-Price J, Findling JW, Gu F, Maldonado M, et al. A 12-month phase 3 study of pasireotide in Cushing’s disease. N Engl J Med. 2012;366(10):914–24.

    CAS  PubMed  Google Scholar 

  149. MacKenzie Feder J, Bourdeau I, Vallette S, Beauregard H, Ste-Marie LG, Lacroix A. Pasireotide monotherapy in Cushing’s disease: a single-Centre experience with 5-year extension of phase III trial. Pituitary. 2014;17(6):519–29.

    CAS  PubMed  Google Scholar 

  150. Bertherat J SJ, Ludlam WH, et al. Long-term pasireotide use leads to significant and sustained improvements in the signs and symptoms of Cushing disease: 24-month results from a randomized phase III study. 94th Annual Meeting and Expo of the Endocrine Society Houston. 2012.

    Google Scholar 

  151. https://www.accessdata.fda.gov/drugsatfda_docs/label/2012/200677lbl.pdf.

  152. Low MJ. Clinical endocrinology and metabolism. The somatostatin neuroendocrine system: physiology and clinical relevance in gastrointestinal and pancreatic disorders. Best Pract Res Clin Endocrinol Metab. 2004;18(4):607–22.

    CAS  PubMed  Google Scholar 

  153. Shenouda M, Maldonado M, Wang Y, Bouillaud E, Hudson M, Nesheiwat D, et al. An open-label dose-escalation study of once-daily and twice-daily pasireotide in healthy volunteers: safety, tolerability, and effects on glucose, insulin, and glucagon levels. Am J Ther. 2014;21(3):164–73.

    PubMed  Google Scholar 

  154. Ceccato F, Scaroni C, Boscaro M. Clinical use of pasireotide for Cushing’s disease in adults. Ther Clin Risk Manag. 2015;11:425–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  155. McKeage K. Pasireotide: a review of its use in Cushing’s disease. Drugs. 2013;73(6):563–74.

    CAS  PubMed  Google Scholar 

  156. Pivonello R, Ferone D, de Herder WW, Kros JM, De Caro ML, Arvigo M, et al. Dopamine receptor expression and function in corticotroph pituitary tumors. J Clin Endocrinol Metab. 2004;89(5):2452–62.

    CAS  PubMed  Google Scholar 

  157. van der Pas R, Feelders RA, Gatto F, de Bruin C, Pereira AM, van Koetsveld PM, et al. Preoperative normalization of cortisol levels in Cushing’s disease after medical treatment: consequences for somatostatin and dopamine receptor subtype expression and in vitro response to somatostatin analogs and dopamine agonists. J Clin Endocrinol Metab. 2013;98(12):E1880–90.

    PubMed  Google Scholar 

  158. Miller JW, Crapo L. The medical treatment of Cushing’s syndrome. Endocr Rev. 1993;14(4):443–58.

    CAS  PubMed  Google Scholar 

  159. Godbout A, Manavela M, Danilowicz K, Beauregard H, Bruno OD, Lacroix A. Cabergoline monotherapy in the long-term treatment of Cushing’s disease. Eur J Endocrinol. 2010;163(5):709–16.

    CAS  PubMed  Google Scholar 

  160. Pivonello R, De Martino MC, Cappabianca P, De Leo M, Faggiano A, Lombardi G, et al. The medical treatment of Cushing’s disease: effectiveness of chronic treatment with the dopamine agonist cabergoline in patients unsuccessfully treated by surgery. J Clin Endocrinol Metab. 2009;94(1):223–30.

    CAS  PubMed  Google Scholar 

  161. Ferriere A, Cortet C, Chanson P, Delemer B, Caron P, Chabre O, et al. Cabergoline for Cushing’s disease: a large retrospective multicenter study. Eur J Endocrinol. 2017;176(3):305–14.

    CAS  PubMed  Google Scholar 

  162. Heaney AP. PPAR-gamma in Cushing’s disease. Pituitary. 2004;7(4):265–9.

    PubMed  Google Scholar 

  163. Estrada J, Boronat M, Mielgo M, Magallon R, Millan I, Diez S, et al. The long-term outcome of pituitary irradiation after unsuccessful transsphenoidal surgery in Cushing’s disease. N Engl J Med. 1997;336(3):172–7.

    CAS  PubMed  Google Scholar 

  164. Minniti G, Brada M. Radiotherapy and radiosurgery for Cushing’s disease. Arq Bras Endocrinol Metabol. 2007;51(8):1373–80.

    PubMed  Google Scholar 

  165. Minniti G, Clarke E, Scaringi C, Enrici RM. Stereotactic radiotherapy and radiosurgery for non-functioning and secreting pituitary adenomas. Rep Pract Oncol Radiother. 2016;21(4):370–8.

    PubMed  Google Scholar 

  166. Wattson DA, Tanguturi SK, Spiegel DY, Niemierko A, Biller BM, Nachtigall LB, et al. Outcomes of proton therapy for patients with functional pituitary adenomas. Int J Radiat Oncol Biol Phys. 2014;90(3):532–9.

    PubMed  Google Scholar 

  167. Storr HL, Plowman PN, Carroll PV, Francois I, Krassas GE, Afshar F, et al. Clinical and endocrine responses to pituitary radiotherapy in pediatric Cushing’s disease: an effective second-line treatment. J Clin Endocrinol Metab. 2003;88(1):34–7.

    CAS  PubMed  Google Scholar 

  168. Xu Z, Lee Vance M, Schlesinger D, Sheehan JP. Hypopituitarism after stereotactic radiosurgery for pituitary adenomas. Neurosurgery. 2013;72(4):630–7; 6-7.

    PubMed  Google Scholar 

  169. Sarkar S, Rajaratnam S, Backianathan S, Chacko G, Chacko AG. Radiation-induced opticochiasmatic glioblastoma multiforme following conventional radiotherapy for Cushing’s disease. Br J Neurosurg. 2014;28(4):510–2.

    PubMed  Google Scholar 

  170. Ghostine S, Ghostine MS, Johnson WD. Radiation therapy in the treatment of pituitary tumors. Neurosurg Focus. 2008;24(5):E8.

    PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported by the intramural research program of the Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, MD20892, USA.

Disclosure Statement

The authors of this article declare that they have nothing to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Constantine A. Stratakis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tatsi, C., Stratakis, C.A. (2019). Cushing Disease: Diagnosis and Treatment. In: Kohn, B. (eds) Pituitary Disorders of Childhood. Contemporary Endocrinology. Humana Press, Cham. https://doi.org/10.1007/978-3-030-11339-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-11339-1_5

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-030-11338-4

  • Online ISBN: 978-3-030-11339-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics