Skip to main content

Advertisement

Log in

Functional imaging of neuroendocrine tumours with PET

  • Published:
Pituitary Aims and scope Submit manuscript

Abstract

Several pathophysiological attributes of neuroendocrine tumours (NET) can be addressed by specific radiolabelled probes. This paper provides an overview on the different radiopharmaceuticals that have been developed for Positron Emission Tomography (PET) of neuroendocrine tumours. A review of the literature on 18F-fluordeoxyglucose (FDG), biogenic amine precursors, somatostatin analogues and hormone syntheses markers is presented. Due to the highly specific tracers that lack any clear anatomical landmarking the advantages of integrated PET/CT are obvious. Amine precursors should be employed in most gastroenteropancreatic NET, FDG should be preserved for more aggressive, less differentiated NETs. Somatostatin analogues are the most promising tracers, since they can improve dosimetry in cases in which radiopeptide therapies are planned. In conclusion, the individual diagnostic approach using PET or the integrated PET/CT should be tailored depending on the histological classification and the differentiation of the tumour.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pearse AG (1968) Common cytochemical and ultrastructural characteristics of cells producing polypeptide hormones (the APUD series) and their relevance to thyroid and ultimobranchial C cells and calcitonin. Proc R Soc Lond B Biol Sci 170:71–80

    Article  PubMed  CAS  Google Scholar 

  2. Pearse AG (1980) The APUD concept and hormone production. Clin Endocrinol Metab 9:211–222

    PubMed  CAS  Google Scholar 

  3. Atkins FL, Beaven MA, Keiser HR (1973) Dopa decarboxylase in medullary carcinoma of the thyroid. N Engl J Med 289:545–548

    Article  PubMed  CAS  Google Scholar 

  4. Baylin SB, Hsu TH, Stevens SA, Kallman CH, Trump DL, Beaven MA (1979) The effects of L-dopa on in vitro and in vivo calcitonin release from medullary thyroid carcinoma. J Clin Endocrinol Metab 48:408–414

    Article  PubMed  CAS  Google Scholar 

  5. Reubi JC (2003) Peptide receptors as molecular targets for cancer diagnosis and therapy. Endocr Rev 24:389–427

    Article  PubMed  CAS  Google Scholar 

  6. Patel RC, Kumar U, Lamb DC, Eid JS, Rocheville M, Grant M et al (2002) Ligand binding to somatostatin receptors induces receptor-specific oligomer formation in live cells. Proc Natl Acad Sci USA 99:3294–3299

    Article  PubMed  CAS  Google Scholar 

  7. Patel YC, Greenwood MT, Panetta R, Demchyshyn L, Niznik H, Srikant CB (1995) The somatostatin receptor family. Life Sci 57:1249–1265

    Article  PubMed  CAS  Google Scholar 

  8. Patel YC, Srikant CB (1994) Subtype selectivity of peptide analogs for all five cloned human somatostatin receptors (hsstr 1–5). Endocrinology 135:2814–2817

    Article  PubMed  CAS  Google Scholar 

  9. Patel YC (1999) Somatostatin and its receptor family. Front Neuroendocrinol 20:157–198

    Article  PubMed  CAS  Google Scholar 

  10. Stroh T, Jackson AC, Dal Farra C, Schonbrunn A, Vincent JP, Beaudet A (2000) Receptor-mediated internalization of somatostatin in rat cortical and hippocampal neurons. Synapse 38:177–186.

    Article  PubMed  CAS  Google Scholar 

  11. Williams ED, Sandler M (1963) The classification of carcinoid tum ours. Lancet 1:238–239

    Article  PubMed  CAS  Google Scholar 

  12. Solcia E, Klöppel G, Sobin L (2000) Histological typing of endocrine tumours. Berlin: Springer

    Google Scholar 

  13. Pacak K, Eisenhofer G, Goldstein DS (2004) Functional imaging of endocrine tumors: role of positron emission tomography. Endocr Rev 25:568–580

    Article  PubMed  Google Scholar 

  14. Lamberts SW, Bakker WH, Reubi JC, Krenning EP (1990) Somatostatin-receptor imaging in the localization of endocrine tumors. N Engl J Med 323:1246–1249

    Article  PubMed  CAS  Google Scholar 

  15. Bergstrom M, Bonasera TA, Lu L, Bergstrom E, Backlin C, Juhlin C et al (1998) In vitro and in vivo primate evaluation of carbon-11-etomidate and carbon-11-metomidate as potential tracers for PET imaging of the adrenal cortex and its tumors. J Nucl Med 39:982–989

    PubMed  CAS  Google Scholar 

  16. Brown RS, Wahl RL (1993) Overexpression of Glut-1 glucose transporter in human breast cancer. An immunohistochemical study. Cancer 72:2979–2985

    Article  PubMed  CAS  Google Scholar 

  17. Shulkin BL, Thompson NW, Shapiro B, Francis IR, Sisson JC (1999) Pheochromocytomas: imaging with 2-[fluorine-18]fluoro-2-deoxy-D-glucose PET. Radiology 212:35–41

    PubMed  CAS  Google Scholar 

  18. Adams S, Baum R, Rink T, Schumm-Drager PM, Usadel KH, Hor G (1998) Limited value of fluorine-18 fluorodeoxyglucose positron emission tomography for the imaging of neuroendocrine tumours. Eur J Nucl Med 25:79–83

    Article  PubMed  CAS  Google Scholar 

  19. Adams S, Baum RP, Hertel A, Schumm-Drager PM, Usadel KH, Hor G (1998) Metabolic (PET) and receptor (SPET) imaging of well- and less well-differentiated tumours: comparison with the expression of the Ki-67 antigen. Nucl Med Commun 19:641–647

    Article  PubMed  CAS  Google Scholar 

  20. Pasquali C, Rubello D, Sperti C, Gasparoni P, Liessi G, Chierichetti F et al (1998) Neuroendocrine tumor imaging: can 18 F-fluorodeoxyglucose positron emission tomography detect tumors with poor prognosis and aggressive behavior? World J Surg 22:588–592

    Article  PubMed  CAS  Google Scholar 

  21. Belhocine T, Foidart J, Rigo P, Najjar F, Thiry A, Quatresooz P et al (2002) Fluorodeoxyglucose positron emission tomography and somatostatin receptor scintigraphy for diagnosing and staging carcinoid tumours: correlations with the pathological indexes p53 and Ki-67. Nucl Med Commun 23:727–734

    Article  PubMed  CAS  Google Scholar 

  22. Diehl M, Risse JH, Brandt-Mainz K, Dietlein M, Bohuslavizki KH, Matheja P et al (2001) Fluorine-18 fluorodeoxyglucose positron emission tomography in medullary thyroid cancer: results of a multicentre study. Eur J Nucl Med 28:1671–1676

    Article  PubMed  CAS  Google Scholar 

  23. Szakall S Jr, Esik O, Bajzik G, Repa I, Dabasi G, Sinkovics I et al (2002) 18F-FDG PET detection of lymph node metastases in medullary thyroid carcinoma. J Nucl Med 43:66–71

    PubMed  Google Scholar 

  24. Garnett S, Firnau G, Nahmias C, Chirakal R (1983) Striatal dopamine metabolism in living monkeys examined by positron emission tomography. Brain Res 280:169–171

    Article  PubMed  CAS  Google Scholar 

  25. Reibring L, Agren H, Hartvig P, Tedroff J, Lundqvist H, Bjurling P et al (1992) Uptake and utilization of [beta-11C]5-hydroxytryptophan in human brain studied by positron emission tomography. Psychiatry Res 45:215–225

    PubMed  CAS  Google Scholar 

  26. Pacak K, Eisenhofer G, Carrasquillo JA, Chen CC, Li ST, Goldstein DS (2001) 6-[18F]fluorodopamine positron emission tomographic (PET) scanning for diagnostic localization of pheochromocytoma. Hypertension 38:6–8

    PubMed  CAS  Google Scholar 

  27. Eriksson B, Bergstrom M, Lilja A, Ahlstrom H, Langstrom B, Oberg K (1993) Positron emission tomography (PET) in neuroendocrine gastrointestinal tumors. Acta Oncol 32: 189–196

    PubMed  CAS  Google Scholar 

  28. Orlefors H, Sundin A, Ahlstrom H, Bjurling P, Bergstrom M, Lilja A et al (1998) Positron emission tomography with 5-hydroxytryprophan in neuroendocrine tumors. J Clin Oncol 16:2534–2541

    PubMed  CAS  Google Scholar 

  29. Sundin A, Eriksson B, Bergstrom M, Bjurling P, Lindner KJ, Oberg K et al (2000) Demonstration of [11C] 5-hydroxy-L-tryptophan uptake and decarboxylation in carcinoid tumors by specific positioning labeling in positron emission tomography. Nucl Med Biol 27:33–41

    Article  PubMed  CAS  Google Scholar 

  30. Orlefors H, Sundin A, Lu L, Oberg K, Langstrom B, Eriksson B et al (2006) Carbidopa pretreatment improves image interpretation and visualisation of carcinoid tumours with 11C-5-hydroxytryptophan positron emission tomography. Eur J Nucl Med Mol Imaging 33:60–65

    Article  PubMed  CAS  Google Scholar 

  31. Eriksson B, Bergstrom M, Orlefors H, Sundin A, Oberg K, Langstrom B (2000) Use of PET in neuroendocrine tumors. In vivo applications and in vitro studies. Q J Nucl Med 44:68–76

    PubMed  CAS  Google Scholar 

  32. Orlefors H, Sundin A, Garske U, Juhlin C, Oberg K, Skogseid B et al (2005) Whole-body (11)C-5-hydroxytryptophan positron emission tomography as a universal imaging technique for neuroendocrine tumors: comparison with somatostatin receptor scintigraphy and computed tomography. J Clin Endocrinol Metab 90:3392–3400

    Article  PubMed  CAS  Google Scholar 

  33. Bergstrom M, Eriksson B, Oberg K, Sundin A, Ahlstrom H, Lindner KJ et al (1996) In vivo demonstration of enzyme activity in endocrine pancreatic tumors: decarboxylation of carbon-11-DOPA to carbon-11-dopamine. J Nucl Med 37: 32–37

    PubMed  CAS  Google Scholar 

  34. Hoegerle S, Altehoefer C, Ghanem N, Koehler G, Waller CF, Scheruebl H et al (2001) Whole-body 18F dopa PET for detection of gastrointestinal carcinoid tumors. Radiology 220: 373–380

    PubMed  CAS  Google Scholar 

  35. Hoegerle S, Altehoefer C, Ghanem N, Brink I, Moser E, Nitzsche E (2001) 18F-DOPA positron emission tomography for tumour detection in patients with medullary thyroid carcinoma and elevated calcitonin levels. Eur J Nucl Med 28:64–71

    Article  PubMed  CAS  Google Scholar 

  36. Hoegerle S, Nitzsche E, Altehoefer C, Ghanem N, Manz T, Brink I et al (2002) Pheochromocytomas: detection with 18F DOPA whole body PET–initial results. Radiology 222:507–512

    PubMed  Google Scholar 

  37. Hoegerle S, Ghanem N, Altehoefer C, Schipper J, Brink I, Moser E et al (2003) 18F-DOPA positron emission tomography for the detection of glomus tumours. Eur J Nucl Med Mol Imaging 30:689–694

    Article  PubMed  CAS  Google Scholar 

  38. Ilias I, Yu J, Carrasquillo JA, Chen CC, Eisenhofer G, Whatley M et al (2003) Superiority of 6-[18F]-fluorodopamine positron emission tomography versus [131I]-metaiodobenzylguanidine scintigraphy in the localization of metastatic pheochromocytoma. J Clin Endocrinol Metab 88:4083–4087

    Article  PubMed  CAS  Google Scholar 

  39. Krenning EP, Bakker WH, Breeman WA, Koper JW, Kooij PP, Ausema L et al (1989) Localisation of endocrine-related tumours with radioiodinated analogue of somatostatin. Lancet 1: 242–244

    Article  PubMed  CAS  Google Scholar 

  40. Valkema R, Pauwels S, Kvols LK, Barone R, Jamar F, Bakker WH et al (2006) Survival and response after peptide receptor radionuclide therapy with [90Y-DOTA0,Tyr3]octreotide in patients with advanced gastroenteropancreatic neuroendocrine tumors. Semin Nucl Med 36:147–156

    Article  PubMed  Google Scholar 

  41. Guhlke S, Wester HJ, Bruns C, Stocklin G (1994) (2-[18F]fluoropropionyl-(D)phe1)-octreotide, a potential radiopharmaceutical for quantitative somatostatin receptor imaging with PET: synthesis, radiolabeling, in vitro validation and biodistribution in mice. Nucl Med Biol 21:819–825

    Article  PubMed  CAS  Google Scholar 

  42. Wester HJ, Brockmann J, Rosch F, Wutz W, Herzog H, Smith-Jones P et al (1997) PET-pharmacokinetics of 18F-octreotide: a comparison with 67Ga-DFO- and 86Y-DTPA-octreotide. Nucl Med Biol 24:275–286

    Article  PubMed  CAS  Google Scholar 

  43. Rosch F, Herzog H, Stolz B, Brockmann J, Kohle M, Muhlensiepen H et al (1999) Uptake kinetics of the somatostatin receptor ligand [86Y]DOTA-DPhe1-Tyr3-octreotide ([86Y]SMT487) using positron emission tomography in non-human primates and calculation of radiation doses of the 90Y-labelled analogue. Eur J Nucl Med 26:358–366

    Article  PubMed  CAS  Google Scholar 

  44. Lewis JS, Lewis MR, Srinivasan A, Schmidt MA, Wang J, Anderson CJ (1999) Comparison of four 64Cu-labeled somatostatin analogues in vitro and in a tumor-bearing rat model: evaluation of new derivatives for positron emission tomography imaging and targeted radiotherapy. J Med Chem 42: 1341–1347

    Article  PubMed  CAS  Google Scholar 

  45. Lewis JS, Srinivasan A, Schmidt MA, Anderson CJ (1999) In vitro and in vivo evaluation of 64Cu-TETA-Tyr3-octreotate. A new somatostatin analog with improved target tissue uptake. Nucl Med Biol 26:267–273

    Article  PubMed  CAS  Google Scholar 

  46. Anderson CJ, Dehdashti F, Cutler PD, Schwarz SW, Laforest R, Bass LA et al (2001) 64Cu-TETA-octreotide as a PET imaging agent for patients with neuroendocrine tumors. J Nucl Med 42:213–221

    PubMed  CAS  Google Scholar 

  47. Henze M, Schuhmacher J, Hipp P, Kowalski J, Becker DW, Doll J et al (2001) PET imaging of somatostatin receptors using [68GA]DOTA-D-Phe1-Tyr3-octreotide: first results in patients with meningiomas. J Nucl Med 42:1053–1056

    PubMed  CAS  Google Scholar 

  48. Meisetschlager G, Poethko T, Stahl A, Wolf I, Scheidhauer K, Schottelius M et al (2006) Gluc-Lys([18F]FP)-TOCA PET in patients with SSTR-positive tumors: biodistribution and diagnostic evaluation compared with [111In]DTPA-octreotide. J Nucl Med 47:566–573

    PubMed  Google Scholar 

  49. Schottelius M, Poethko T, Herz M, Reubi JC, Kessler H, Schwaiger M et al (2004) First (18)F-labeled tracer suitable for routine clinical imaging of sst receptor-expressing tumors using positron emission tomography. Clin Cancer Res 10:3593–3606

    Article  PubMed  CAS  Google Scholar 

  50. Hofmann M, Maecke H, Borner R, Weckesser E, Schoffski P, Oei L et al (2001) Biokinetics and imaging with the somatostatin receptor PET radioligand (68)Ga-DOTATOC: preliminary data. Eur J Nucl Med 28:1751–1757

    Article  PubMed  CAS  Google Scholar 

  51. Kowalski J, Henze M, Schuhmacher J, Macke HR, Hofmann M, Haberkorn U (2003) Evaluation of positron emission tomography imaging using [68Ga]-DOTA-D Phe(1)-Tyr(3)-Octreotide in comparison to [111In]-DTPAOC SPECT. First results in patients with neuroendocrine tumors. Mol Imaging Biol 5:42–48

    Article  PubMed  Google Scholar 

  52. Henze M, Dimitrakopoulou-Strauss A, Milker-Zabel S, Schuhmacher J, Strauss LG, Doll J et al (2005) Characterization of 68Ga-DOTA-D-Phe1-Tyr3-octreotide kinetics in patients with meningiomas. J Nucl Med 46:763–769

    PubMed  CAS  Google Scholar 

  53. Milker-Zabel S, Zabel-du Bois A, Henze M, Huber P, Schulz-Ertner D, Hoess A et al (2006) Improved target volume definition for fractionated stereotactic radiotherapy in patients with intracranial meningiomas by correlation of CT, MRI, and [68Ga]-DOTATOC-PET. Int J Radiat Oncol Biol Phys 65:222–227

    Article  PubMed  Google Scholar 

  54. Wild D, Macke HR, Waser B, Reubi JC, Ginj M, Rasch H et al (2005) 68Ga-DOTANOC: a first compound for PET imaging with high affinity for somatostatin receptor subtypes 2 and 5. Eur J Nucl Med Mol Imaging 32:724

    Article  PubMed  Google Scholar 

  55. Macke HR, Smith-Jones P, Maina T, Stolz B, Albert R, Bruns C et al (1993) New octreotide derivatives for in vivo targeting of somatostatin receptor-positive tumors for single photon emission computed tomography (SPECT) and positron emission tomography (PET). Horm Metab Res Suppl 27:12–17

    PubMed  CAS  Google Scholar 

  56. Shulkin BL, Wieland DM, Schwaiger M, Thompson NW, Francis IR, Haka MS et al (1992) PET scanning with hydroxyephedrine: an approach to the localization of pheochromocytoma. J Nucl Med 33:1125–1131

    PubMed  CAS  Google Scholar 

  57. Trampal C, Engler H, Juhlin C, Bergstrom M, Langstrom B (2004) Pheochromocytomas: detection with 11C hydroxyephedrine PET. Radiology 230:423–428

    PubMed  Google Scholar 

  58. Mann GN, Link JM, Pham P, Pickett CA, Byrd DR, Kinahan PE et al (2006) [11C]metahydroxyephedrine and [18F]fluorodeoxyglucose positron emission tomography improve clinical decision making in suspected pheochromocytoma. Ann Surg Oncol 13:187–197

    Article  PubMed  Google Scholar 

  59. Bergstrom M, Juhlin C, Bonasera TA, Sundin A, Rastad J, Akerstrom G et al (2000) PET imaging of adrenal cortical tumors with the 11beta-hydroxylase tracer 11C-metomidate. J Nucl Med 41:275–282

    PubMed  CAS  Google Scholar 

  60. Minn H, Salonen A, Friberg J, Roivainen A, Viljanen T, Langsjo J et al (2004) Imaging of adrenal incidentalomas with PET using (11)C-metomidate and (18)F-FDG. J Nucl Med 45: 972–979

    PubMed  CAS  Google Scholar 

  61. Hennings J, Lindhe O, Bergstrom M, Langstrom B, Sundin A, Hellman P (2006) [11C]metomidate positron emission tomography of adrenocortical tumors in correlation with histopathological findings. J Clin Endocrinol Metab 91:1410–1414

    Article  PubMed  CAS  Google Scholar 

  62. Beyer T, Townsend DW, Brun T, Kinahan PE, Charron M, Roddy R et al (2000) A combined PET/CT scanner for clinical oncology. J Nucl Med 41:1369–1379

    PubMed  CAS  Google Scholar 

  63. von Schulthess GK, Steinert HC, Hany TF (2006) Integrated PET/CT: current applications and future directions. Radiology 238:405–422

    PubMed  Google Scholar 

  64. Bruns C, Lewis I, Briner U, Meno-Tetang G, Weckbecker G (2002) SOM230: a novel somatostatin peptidomimetic with broad somatotropin release inhibiting factor (SRIF) receptor binding and a unique antisecretory profile. Eur J Endocrinol 146:707–716

    Article  PubMed  CAS  Google Scholar 

  65. Glatting G, Landmann M, Wunderlich A, Kull T, Mottaghy FM, Reske SN (2006) Internal radionuclide therapy: A software for treatment planning using tomographic data. Nuklearmedizin 45:in press

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felix M. Mottaghy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mottaghy, F.M., Reske, S.N. Functional imaging of neuroendocrine tumours with PET. Pituitary 9, 237–242 (2006). https://doi.org/10.1007/s11102-006-0269-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11102-006-0269-y

Keywords

Navigation