Skip to main content
Log in

Erysimum cheiranthoides, an ecological research system with potential as a genetic and genomic model for studying cardiac glycoside biosynthesis

  • Published:
Phytochemistry Reviews Aims and scope Submit manuscript

Abstract

At least twelve plant families contain species that synthesize cardiac glycosides as defense against herbivory. These inhibitors of animal Na+, K+-ATPases also have medical uses in treating congestive heart failure and other diseases. However, despite extensive ecological research and centuries of use in both traditional and modern medicine, the complete cardiac glycoside biosynthesis pathway has yet to be elucidated in any plant species. To a large extent, this research deficit results from the fact that cardiac glycosides are produced exclusively by non-model plant species such as Digitalis that have not been amenable to the development of mutagenesis, cloning, and genetic mapping approaches. Recent advances in genome sequencing, transcript profiling, plant transformation, transient expression assays, and plant metabolite analysis have provided new opportunities for the investigation and elucidation of cardiac glycoside biosynthesis pathways. The genetic tools that have been developed for Brassicaceae, in particular Arabidopsis thaliana, may be directly applicable to Erysimum, a Brassicaceae genus that characteristically produces cardiac glycosides as defensive metabolites. We propose that Erysimum cheiranthoides (wormseed wallflower), a rapid-cycling, self-pollinating species with a relatively small, diploid genome, would be a suitable model system to advance research on the biosynthesis of cardiac glycosides in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Adapted from Kreis and Müller-Uri (2010)

Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Agrawal AA, Petschenka G, Bingham RA, Weber MG, Rasmann S (2012) Toxic cardenolides: chemical ecology and coevolution of specialized plant–herbivore interactions. New Phytol 194:28–45

    CAS  PubMed  Google Scholar 

  • Al-Shehbaz IA (1988) The genera of Anchonieae (Hesperideae) (Cruciferae; Brassicaceae) in the southeastern United States. J Arnold Arbor 69:193–212

    Google Scholar 

  • Al-Shehbaz IA (2010) Erysimum Linnaeus. In: Committee (ed) Flora of North America North of Mexico. Oxford University Press, New York, pp 534–545

    Google Scholar 

  • Araya JJ, Kindscher K, Timmermann BN (2012) Cytotoxic cardiac glycosides and other compounds from Asclepias syriaca. J Nat Prod 75:400–407

    CAS  PubMed  Google Scholar 

  • Bainard JD, Bainard LD, Henry TA, Fazekas AJ, Newmaster SG (2012) A multivariate analysis of variation in genome size and endoreduplication in angiosperms reveals strong phylogenetic signal and association with phenotypic traits. New Phytol 196:1240–1250

    CAS  PubMed  Google Scholar 

  • Beran F, Pauchet Y, Kunert G, Reichelt M, Wielsch N, Vogel H, Reinecke A, Svatos A, Mewis I, Schmid D, Ramasamy S, Ulrichs C, Hansson BS, Gershenzon J, Heckel DG (2014) Phyllotreta striolata flea beetles use host plant defense compounds to create their own glucosinolate–myrosinase system. Proc Natl Acad Sci USA 111:7349–7354

    CAS  PubMed  Google Scholar 

  • Bino RJ, Hall RD, Fiehn O, Kopka J, Saito K, Draper J, Nikolau BJ, Mendes P, Roessner-Tunali U, Beale MH, Trethewey RN, Lange BM, Wurtele ES, Sumner LW (2004) Potential of metabolomics as a functional genomics tool. Trends Plant Sci 9:418–425

    CAS  PubMed  Google Scholar 

  • Bock H (1577) Kreutterbuch. Johan Rihel, Straßburg

    Google Scholar 

  • Brock A, Herzfeld T, Paschke R, Koch M, Drager B (2006) Brassicaceae contain nortropane alkaloids. Phytochemistry 67:2050–2057

    CAS  PubMed  Google Scholar 

  • Burch-Smith TM, Schiff M, Liu Y, Dinesh-Kumar SP (2006) Efficient virus-induced gene silencing in Arabidopsis. Plant Physiol 142:21–27

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chew FS (1975) Coevolution of pierid butterflies and their cruciferous food plants. 1. Relative quality of available resources. Oecologia 20:117–127

    PubMed  Google Scholar 

  • Chew FS (1977) Coevolution of pierid butterflies and their cruciferous foodplants. 2. Distribution of eggs on potential foodplants. Evolution 31:568–579

    PubMed  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    CAS  PubMed  Google Scholar 

  • Cordus V (1542) Dispensatorium. Nürnberg

  • Dimock MB, Renwick JA, Radke CD, Sachdev-Gupta K (1991) Chemical constituents of an unacceptable crucifer, Erysimum cheiranthoides, deter feeding by Pieris rapae. J Chem Ecol 17:525–533

    CAS  PubMed  Google Scholar 

  • Dioscorides P (~ 70) Περὶ ὕλης ἰατρικῆς - De Materia Medica. Anazarbus

  • Dzimiri N, Fricke U, Klaus W (1987) Influence of derivation on the lipophilicity and inhibitory actions of cardiac glycosides on myocardial Na +-K +-ATPase. Br J Pharmacol 91:31–38

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ehrlich PR, Raven P (1964) Butterflies and plants: a study in coevolution. Evolution 18:586–608

    Google Scholar 

  • Feeny P (1977) Ecology of the Cruciferae. Ann Mo Bot Gard 64:221–234

    Google Scholar 

  • Finsterbusch A, Lindemann P, Grimm R, Eckerskorn C, Luckner M (1999) Delta(5)-3beta-hydroxysteroid dehydrogenase from Digitalis lanata Ehrh. A multifunctional enzyme in steroid metabolism? Planta 209:478–486

    CAS  PubMed  Google Scholar 

  • Fraenkel GS (1959) The raison d’etre of secondary plant substances; these odd chemicals arose as a means of protecting plants from insects and now guide insects to food. Science 129:1466–1470

    CAS  PubMed  Google Scholar 

  • Francis F, Lognay G, Wathelet JP, Haubruge E (2002) Characterisation of aphid myrosinase and degradation studies of glucosinolates. Arch Insect Biochem Physiol 50:173–182

    CAS  PubMed  Google Scholar 

  • Frisch T, Møller BL (2012) Possible evolution of alliarinoside biosynthesis from the glucosinolate pathway in Alliaria petiolata. FEBS J 279:1545–1562

    CAS  PubMed  Google Scholar 

  • Fürst R, Zundorf I, Dingermann T (2017) New knowledge about old drugs: the Anti-inflammatory properties of cardiac glycosides. Planta Med 83:977–984

    PubMed  Google Scholar 

  • Gärtner DE, Keilholz W, Seitz HU (1994) Purification, characterization and partial peptide microsequencing of progesterone 5 beta-reductase from shoot cultures of Digitalis purpurea. Eur J Biochem 225:1125–1132

    PubMed  Google Scholar 

  • Gómez JM (2005) Non-additive effects of herbivores and pollinators on Erysimum mediohispanicum (Cruciferae) fitness. Oecologia 143(3):412–418

    PubMed  Google Scholar 

  • Gomez JM, Perfectti F, Lorite J (2015) The role of pollinators in floral diversification in a clade of generalist flowers. Evolution 69:863–878

    PubMed  Google Scholar 

  • Gurel E, Karvar S, Yucesan B, Eker I, Sameeullah M (2017) An overview of cardenolides in Digitalis—more than a cardiotonic compound. Curr Pharm Des 23:5104–5114

    CAS  PubMed  Google Scholar 

  • Halkier BA, Gershenzon J (2006) Biology and biochemistry of glucosinolates. Annu Rev Plant Biol 57:303–333

    CAS  PubMed  Google Scholar 

  • Haribal M, Renwick JA (2001) Seasonal and population variation in flavonoid and alliarinoside content of Alliaria petiolata. J Chem Ecol 27:1585–1594

    CAS  PubMed  Google Scholar 

  • Haughn GW, Davin L, Giblin M, Underhill EW (1991) Biochemical genetics of plant secondary metabolites in Arabidopsis thaliana. The glucosinolates. Plant Physiol 97:217–226

    CAS  PubMed  PubMed Central  Google Scholar 

  • Henzi MX, Christey MC, McNeil DL (2000) Factors that influence Agrobacterium rhizogenes-mediated transformation of broccoli (Brassica oleracea L. var. italica). Plant Cell Rep 19:994–999

    CAS  Google Scholar 

  • Herl V, Fischer G, Muller-Uri F, Kreis W (2006) Molecular cloning and heterologous expression of progesterone 5 beta-reductase from Digitalis lanata Ehrh. Phytochemistry 67:225–231

    CAS  PubMed  Google Scholar 

  • Howe GA, Jander G (2008) Plant immunity to insect herbivores. Ann Rev Plant Biol 59:41–66

    CAS  Google Scholar 

  • Huang XP, Renwick JAA (1993) Differential selection of host plants by two Pieris species: the role of oviposition stimulants and deterrents. Entomol Exp Appl 68:59–69

    Google Scholar 

  • Huang X, Renwick JA, Sachdev-Gupta K (1993) A chemical basis for differential acceptance of Erysimum cheiranthoides by two Pieris species. J Chem Ecol 19:195–210

    CAS  PubMed  Google Scholar 

  • Huang CH, Sun R, Hu Y, Zeng L, Zhang N, Cai L, Zhang Q, Koch MA, Al-Shehbaz I, Edger PP, Pires JC, Tan DY, Zhong Y, Ma H (2016) Resolution of Brassicaceae phylogeny using nuclear genes uncovers nested radiations and supports convergent morphological evolution. Mol Biol Evol 33:394–412

    CAS  PubMed  Google Scholar 

  • Jaretzky R, Wilcke M (1932) Die herzwirksamen Glykoside von Cheiranthus cheiri und verwandten Arten. Arch Pharm 270:81–94

    CAS  Google Scholar 

  • Johansen LK, Carrington JC (2001) Silencing on the spot. Induction and suppression of RNA silencing in the Agrobacterium-mediated transient expression system. Plant Physiol 126:930–938

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jones AM, Bridges M, Bones AM, Cole R, Rossiter JT (2001) Purification and characterisation of a non-plant myrosinase from the cabbage aphid Brevicoryne brassicae (L.). Insect Biochem Mol Biol 31:1–5

    CAS  PubMed  Google Scholar 

  • Karlsson LM, Milberg P (2002) Stratification responses in the late-germinating summer annual weed Erysimum cheiranthoides. J Appl Bot 76:172–175

    Google Scholar 

  • Kim JH, Durrett TP, Last RL, Jander G (2004) Characterization of the Arabidopsis TU8 glucosinolate mutation, an allele of TERMINAL FLOWER2. Plant Mol Biol 54:671–682

    CAS  PubMed  Google Scholar 

  • Kliebenstein DJ, D’Auria JC, Behere AS, Kim JH, Gunderson KL, Breen JN, Lee G, Gershenzon J, Last RL, Jander G (2007) Characterization of seed-specific benzoyloxyglucosinolate mutations in Arabidopsis thaliana. Plant J 51:1062–1076

    CAS  PubMed  Google Scholar 

  • Kreis W (2017) The foxgloves (Digitalis) revisited. Planta Med 83:962–976

    CAS  PubMed  Google Scholar 

  • Kreis W, Müller-Uri F (2010) Biochemistry of sterols, cardiac glycosides, brassinosteroids, phytoecdysteroids and steroid saponins. In: Wink M (ed) Biochemistry of plant secondary metabolism, vol 40. CRC Press, Sheffield, pp 304–363

    Google Scholar 

  • Kreis W, Hensel A, Stuhlemmer U (1998) Cardenolide biosynthesis in foxglove. Planta Med 64:491–499

    CAS  Google Scholar 

  • Kuate SP, Padua RM, Eisenbeiss WF, Kreis W (2008) Purification and characterization of malonyl-coenzyme A: 21-hydroxypregnane 21-O-malonyltransferase (Dp21MaT) from leaves of Digitalis purpurea L. Phytochemistry 69:619–626

    CAS  PubMed  Google Scholar 

  • Latowski K, Kortus M, Kowalewski Z (1979) Jtola kardenolidow w ocenie chemotaksonomicznej niektorych gatunkow z rodzaju Erysimum, Cheiranthus i Sisymbrium—the role of cardenolides in the chemotaxonomical evaluation of some species of the genera Erysimum, Cheiranthus, and Sisymbrium. Fragm Florist et Geobot 25:261–268

    Google Scholar 

  • Lei ZH, Yahara S, Nohara T, Shan TB, Xiong JZ (1996) Cardenolides from Erysimum cheiranthoides. Phytochemistry 41:1187–1189

    CAS  PubMed  Google Scholar 

  • Lei ZH, Jin ZX, Ma YL, Tai BS, Kong Q, Yahara S, Nohara T (1998) Cardiac glycosides from Erysimum cheiranthoides. Phytochemistry 49:1801–1803

    CAS  PubMed  Google Scholar 

  • Lei ZH, Yahara S, Nohara T, Tai BS, Xiong JZ, Ma YL (2000) Cardiac glycosides from Erysimum cheiranthoides. Chem Pharm Bull (Tokyo) 48:290–292

    CAS  Google Scholar 

  • Lei ZH, Nakayama H, Kuniyasu A, Tai BS, Nohara T (2002) Cardiac glycosides from Erysimum cheiranthoides. Chem Pharm Bull (Tokyo) 50:861–862

    CAS  Google Scholar 

  • Liu X, Brost J, Hutcheon C, Guilfoil R, Wilson AK, Leung S, Shewmaker CK, Rooke S, Nguyen T, Kiser J, De Rocher J (2012) Transformation of the oilseed crop Camelina sativa by Agrobacterium-mediated floral dip and simple large-scale screening of transformants. In Vitro Cell Dev Biol Plant 48:462–468

    Google Scholar 

  • Luckner M, Wichtl M (2000) Digitalis: Geschichte, Biologie, Chemie, Physiologie, Molekularbiologie, medizinische Anwendung. Wissenschaftliche Verlagsgesellschaft, Stuttgart

    Google Scholar 

  • Makarevich FI, Kolesnikov DG (1965) Cardenolides of the seeds of Erysimum cheiranthoides L. Khim Prir Soedin 1:363

    Google Scholar 

  • Makarevich FI, Zhernoklev KV, Slyusarskaya TB, Yarmolenko GN (1994) Cardenolide-containing plants of the family Cruciferae. Chem Nat Comp 30:275–289

    Google Scholar 

  • Melero CP, Medarde M, San Feliciano A (2000) A short review on cardiotonic steroids and their aminoguanidine analogues. Molecules 5:51–81

    CAS  Google Scholar 

  • Moazzeni H, Zarre S, Pfeil BE, Bertrand YJK, German DA, Al-Shehbaz IA, Mummenhoff K, Oxelman B (2014) Phylogenetic perspectives on diversification and character evolution in the species-rich genus Erysimum (Erysimeae; Brassicaceae) based on a densely sampled ITS approach. Bot J Linn Soc 175:497–522

    Google Scholar 

  • Müller C, Wittstock U (2005) Uptake and turn-over of glucosinolates sequestered in the sawfly Athalia rosae. Insect Biochem Mol Biol 35:1189–1198

    PubMed  Google Scholar 

  • Munkert J, Bauer P, Burda E, Muller-Uri F, Kreis W (2011) Progesterone 5beta-reductase of Erysimum crepidifolium: cDNA cloning, expression in Escherichia coli, and reduction of enones with the recombinant protein. Phytochemistry 72:1710–1717

    CAS  PubMed  Google Scholar 

  • Munkert J, Ernst M, Muller-Uri F, Kreis W (2014) Identification and stress-induced expression of three 3beta-hydroxysteroid dehydrogenases from Erysimum crepidifolium Rchb. and their putative role in cardenolide biosynthesis. Phytochemistry 100:26–33

    CAS  PubMed  Google Scholar 

  • Munkert J, Costa C, Budeanu O, Petersen J, Bertolucci S, Fischer G, Muller-Uri F, Kreis W (2015a) Progesterone 5beta-reductase genes of the Brassicaceae family as function-associated molecular markers. Plant Biol 17:1113–1122

    CAS  PubMed  Google Scholar 

  • Munkert J, Pollier J, Miettinen K, Van Moerkercke A, Payne R, Muller-Uri F, Burlat V, O’Connor SE, Memelink J, Kreis W, Goossens A (2015b) Iridoid synthase activity is common among the plant progesterone 5beta-reductase family. Mol Plant 8:136–152

    CAS  PubMed  Google Scholar 

  • Nagata W, Tamm C, Reichstein T (1957) Die Glykoside von Erysimum crepidifolium HGL Reichenbach. Glykoside und Aglykone 169. Mitteilung. Helv Chim Acta 40:41–61

    CAS  Google Scholar 

  • Nielsen JK (1978a) Host plant discrimination within Cruciferae—feeding responses of 4 leaf beetles (Coleoptera-Chrysomelidae) to glucosinolates, cucurbitacins and cardenolides. Entomol Exp Appl 24:41–54

    CAS  Google Scholar 

  • Nielsen JK (1978b) Host plant selection of monophagous and oligophagous flea beetles feeding on crucifers. Entomol Exp Appl 24:562–569

    CAS  Google Scholar 

  • Nielsen JK, Nagao T, Okabe H, Shinoda T (2010) Resistance in the plant, Barbarea vulgaris, and counter-adaptations in flea beetles mediated by saponins. J Chem Ecol 36:277–285

    CAS  PubMed  Google Scholar 

  • Patel S (2016) Plant-derived cardiac glycosides: role in heart ailments and cancer management. Biomed Pharmacother 84:1036–1041

    CAS  Google Scholar 

  • Pliny the Elder (77) Naturalis Historia, Book 18. Rome

  • Polatschek A (2010) Revision der Gattung Erysimum (Cruciferae): Teil 1: Russland, die Nachfolgestaaten der USSR (excl. Georgien, Armenien, Azerbaidzan), China, Indien, Pakistan, Japan und Korea. Ann Naturhistorischen Mus Wien Serie B 111:181–275

    Google Scholar 

  • Polatschek A (2011) Revision der Gattung Erysimum (Cruciferae), Teil 2: Georgien, Armenien, Azerbaidzan, Türkei, Syrien, Libanon, Israel, Jordanien, Irak, Iran, Afghanistan. Ann Naturhistorischen Mus Wien Serie B 112:369–497

    Google Scholar 

  • Polatschek A (2012) Revision der Gattung Erysimum (Cruciferae), Teil 3: amerika und Grönland. Ann Naturhistorischen Mus Wien Serie B 113:139–192

    Google Scholar 

  • Polatschek A, Snogerup S (2002) Erysimum. In: Strid A, Tan KG (eds) Flora Hellenica 2. Koeltz Scientific Books, Koenigstein, pp 130–152

    Google Scholar 

  • Pontoppidan B, Ekbom B, Eriksson S, Meijer J (2001) Purification and characterization of myrosinase from the cabbage aphid (Brevicoryne brassicae), a Brassica herbivore. Eur J Biochem 268:1041–1048

    CAS  PubMed  Google Scholar 

  • Puddephat IJ, Robinson HT, Fenning TM, Barbara DJ, Morton A, Pink DAC (2001) Recovery of phenotypically normal transgenic plants of Brassica oleracea upon Agrobacterium rhizogenes-mediated co-transformation and selection of transformed hairy roots by GUS assay. Mol Breed 7:229–242

    CAS  Google Scholar 

  • Qing CM, Fan L, Yao L, Bouchez D, Tourneur C, Yan L, Robaglia C (2000) Transformation of Pakchoi (Brassica rapa L. ssp. chinensis) by Agrobacterium infiltration. Mol Breed 6:67–72

    CAS  Google Scholar 

  • Rahier A, Darnet S, Bouvier F, Camara B, Bard M (2006) Molecular and enzymatic characterizations of novel bifunctional 3β-hydroxysteroid dehydrogenases/C-4 decarboxylases from Arabidopsis thaliana. J Biol Chem 281:27264–27277

    CAS  PubMed  Google Scholar 

  • Ratzka A, Vogel H, Kliebenstein DJ, Mitchell-Olds T, Kroymann J (2002) Disarming the mustard oil bomb. Proc Natl Acad Sci USA 99:11223–11228

    CAS  PubMed  Google Scholar 

  • Renwick JAA, Radke CD (1985) Constituents of host plants and non-host plants deterring oviposition by the cabbage butterfly, Pieris rapae. Entomol Exp Appl 39:21–26

    Google Scholar 

  • Renwick JA, Radke CD (1987) Chemical stimulants and deterrents regulating acceptance or rejection of crucifers by cabbage butterflies. J Chem Ecol 13:1771–1776

    CAS  PubMed  Google Scholar 

  • Renwick JA, Radke CD, Sachdev-Gupta K (1989) Chemical constituents of Erysimum cheiranthoides deterring oviposition by the cabbage butterfly, Pieris rapae. J Chem Ecol 15:2161–2169

    CAS  PubMed  Google Scholar 

  • Rodman J, Brower LP, Frey J (1982) Cardenolides in North American Erysimum (Cruciferae), a preliminary chemotaxonomic report. Taxon 31:507–516

    Google Scholar 

  • Sachdev-Gupta K, Renwick JA, Radke CD (1990) Isolation and identification of oviposition deterrents to cabbage butterfly, Pieris rapae, from Erysimum cheiranthoides. J Chem Ecol 16:1059–1067

    CAS  PubMed  Google Scholar 

  • Sachdev-Gupta K, Radke C, Renwick JA, Dimock MB (1993) Cardenolides from Erysimum cheiranthoides: feeding deterrents to Pieris rapae larvae. J Chem Ecol 19:1355–1369

    CAS  PubMed  Google Scholar 

  • Schneider NFZ, Cerella C, Simoes CMO, Diederich M (2017) Anticancer and immunogenic properties of cardiac glycosides. Molecules. https://doi.org/10.3390/molecules22111932

    Article  PubMed  PubMed Central  Google Scholar 

  • Sedbrook JC, Phippen WB, Marks MD (2014) New approaches to facilitate rapid domestication of a wild plant to an oilseed crop: example pennycress (Thlaspi arvense L.). Plant Sci 227:122–132

    CAS  PubMed  Google Scholar 

  • Shinoda T, Nagao T, Nakayama M, Serizawa H, Koshioka M, Okabe H, Kawai A (2002) Identification of a triterpenoid saponin from a crucifer, Barbarea vulgaris, as a feeding deterrent to the diamondback moth, Plutella xylostella. J Chem Ecol 28:587–599

    CAS  PubMed  Google Scholar 

  • Singh B, Rastogi RP (1970) Cardenolides–glycosides and genins. Phytochemistry 9:315–331

    CAS  Google Scholar 

  • Städler E, Renwick JAA, Radke CD, Sachdev-Gupta K (1995) Tarsal contact chemoreceptor response to glucosinolates and cardenolides mediating oviposition in Pieris rapae. Physiol Ent 20:175

    Google Scholar 

  • Steyn PS, van Heerden FR (1998) Bufadienolides of plant and animal origin. Nat Prod Rep 15:397–413

    CAS  PubMed  Google Scholar 

  • Stoll A (1937) The Cardiac Glycosides. A series of three lectures delivered in the College of the Pharmaceutical Society of Great Britain under the auspices of the University of London. The Pharmaceutical Press, London

    Google Scholar 

  • Tabermontanus TJ (1588) Neuw Kreuterbuch. N. Bassaeus, Frankfurt

    Google Scholar 

  • Theurer C, Treumann HJ, Faust T, May U, Kreis W (1994) Glycosylation in cardenolide biosynthesis. Plant Cell Tissue Organ Cult 38:327–335

    CAS  Google Scholar 

  • Weber MG, Agrawal AA (2014) Defense mutualisms enhance plant diversification. Proc Natl Acad Sci USA 111:16442–16447

    CAS  PubMed  Google Scholar 

  • Wiklund C, Ahrberg C (1978) Host plants, nectar source plants, and habitat selection of males and females of Anthocharis cardamines (Lepidoptera). Oikos 31:169–183

    Google Scholar 

  • Withering W (1785) An account of foxglove and some of its medicinal uses. M. Swynney, London

    Google Scholar 

  • Wittstock U, Agerbirk N, Stauber EJ, Olsen CE, Hippler M, Mitchell-Olds T, Gershenzon J, Vogel H (2004) Successful herbivore attack due to metabolic diversion of a plant chemical defense. Proc Natl Acad Sci USA 101:4859–4864

    CAS  PubMed  Google Scholar 

  • Zhou TY, Lou LL, Yang G, Dorofeyev VI, Al-Shehbaz IA (2001) Erysimum Linnaeus. In: Wu ZY, Raven PH (eds) Flora of China. Missouri Botanical Garden Press, St. Louis, pp 163–169

    Google Scholar 

  • Zhu YC (1989) Plantae medicinales Chinae boreali-orientalis. Heilongjiang Science and Technology Publishing House, Harbin

    Google Scholar 

Download references

Acknowledgements

We thank Georg Petschenka for the E. cheiranthoides photograph in Fig. 1a, and Kaitlin Pidgeon and Suzy Strickler for experimental assistance. Funding for this work was provided by Swiss National Science Foundation Grant PZ00P3-161472 to T.Z., a fellowship from the Ministry of Science, Research, and Technology of Iran to M.M., and a Triad Foundation Grant and US National Science Foundation award IOS-1645256 to G.J.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georg Jander.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Züst, T., Mirzaei, M. & Jander, G. Erysimum cheiranthoides, an ecological research system with potential as a genetic and genomic model for studying cardiac glycoside biosynthesis. Phytochem Rev 17, 1239–1251 (2018). https://doi.org/10.1007/s11101-018-9562-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11101-018-9562-4

Keywords

Navigation