Skip to main content

Natural Products as Sources of Anticancer Agents: Current Approaches and Perspectives

  • Chapter
  • First Online:
Natural Products as Source of Molecules with Therapeutic Potential

Abstract

Natural products from marine invertebrates and microbes from terrestrial (and marine) sources together with higher plants have been an important source of many clinically useful anticancer agents. Over 60% of the current anticancer drugs have their origin in one way or another from natural sources. Some important examples include the vinca alkaloids, camptothecin derivatives, and taxanes. This chapter will briefly cover older agents where new findings have been published but will emphasize current promising new agents which are in clinical use and development, based on activity against cancer-related targets. These compounds may have been developed from targeted or phenotypic screening programs, and examples will be given from each approach. Then the importance of multidisciplinary collaboration in the generation and optimization of novel molecular leads from natural product sources will be discussed, with examples chosen to demonstrate how chemical and biochemical strategies were used to improve their biological effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agatsuma T (2017) Development of new ADC technology with topoisomerase I inhibitor. Yakugaku Zasshi 137:545–550

    Article  CAS  PubMed  Google Scholar 

  • Andrejauskas-Buchdunger E, Reganass U (1992) Differential inhibition of the epidermal growth factor-, platelet derived growth factor-, and protein kinase C-mediated signal transduction pathways by the staurosporine derivative CGP 41251. Cancer Res 52:5353–5358

    CAS  PubMed  Google Scholar 

  • Awada A, Bondarenko IN, Bonneterre J et al (2014) A randomized controlled phase II trial of a novel composition of paclitaxel embedded into neutral and cationic lipids targeting tumor endothelial cells in advanced triple-negative breast cancer (TNBC). Ann Oncol 25:824–831

    Article  CAS  PubMed  Google Scholar 

  • Basmadjian C, Zhao Q, Djehal A et al (2014) Cancer wars: natural products strike back. Front Chem 2:20

    Article  PubMed  PubMed Central  Google Scholar 

  • Bebbington MWP (2017) Natural product analogues: towards a blueprint for analogue-focused synthesis. Chem Soc Rev 46:5059–5109

    Article  CAS  PubMed  Google Scholar 

  • Bertin MJ, Schwartz SL, Lee J et al (2015) Spongosine production by a Vibrio harveyi strain associated with the sponge Tectitethya crypta. J Nat Prod 78:493–499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Black J, Menderes G, Bellone S et al (2016) SYD985, a novel duocarmycin-based HER2-targeting antibody-drug conjugate, shows antitumor activity in uterine serous carcinoma with HER2/Neu expression. Mol Cancer Ther 15:1900–1909

    Article  CAS  PubMed  Google Scholar 

  • Chan SY, Gordon AN, Coleman RE et al (2003) A phase 2 study of the cytotoxic immunoconjugate CMB-401 (hCTM01-calicheamicin) in patients with platinum-sensitive recurrent epithelial ovarian carcinoma. Cancer Immunol Immunother 52:243–248

    CAS  PubMed  Google Scholar 

  • Cragg GM, Newman DJ (2014) Natural products as sources of new anticancer agents. In: Feliciano AS, Filho VC (eds) Descoberta, Desenho e Desenvolvivmento de Novos Agentes Anticancer no Ambito do Programa Iberoamericano CYTED. Editoria Univali, Itajai, pp 67–118

    Google Scholar 

  • Cragg GM, Pezzuto JM (2016) Natural products as a vital source for the discovery of cancer chemotherapeutic and chemopreventive agents. Med Princ Pract 25:41–59

    Article  PubMed  Google Scholar 

  • Damelin M, Bankovich A, Park A et al (2015) Anti-EFNA4 calicheamicin conjugates effectively target triple-negative breast and ovarian tumor-initiating cells to result in sustained tumor regressions. Clin Cancer Res 21:4165–4173

    Article  CAS  PubMed  Google Scholar 

  • Davis AM, Tinker AV, Friedlander M (2014) “Platinum resistant” ovarian cancer: what is it, who to treat and how to measure benefit? Gynecol Oncol 133:624–631

    Article  CAS  PubMed  Google Scholar 

  • Elgersma RC, Coumans RG, Huijbregts T et al (2015) Design, synthesis, and evaluation of linker-duocarmycin payloads: toward selection of HER2-targeting antibody-drug conjugate SYD985. Mol Pharm 12:1813–1835

    Article  CAS  PubMed  Google Scholar 

  • Galal A, El-Bakly WM, El-Demedash E (2016) Selective A3 adenosine receptor agonist protects against doxorubicin-induced cardiotoxicity. Cancer Chemother Pharmacol 77:309–322

    Article  CAS  PubMed  Google Scholar 

  • Giddings LA, Newman DJ (2015) Bioactive compounds from extremophiles, genomic studies, biosynthetic gene clusters, and new dereplication methods. In: Tiquia-Arashiro SM, Mormile M (eds) Extremophilic bacteria, Springer briefs in microbiology. Springer, Heidelberg, pp 1–58

    Google Scholar 

  • Giddings LA, Newman DJ (2017) Microbial involvement in the production of natural products by plants, marine invertebrates and other organisms. In: Atta-ur-Rahman (ed) Frontiers in natural product chemistry, vol 3. Bentham, Karachi, pp 1–64

    Google Scholar 

  • Gottfried K, Klar U, Platzek J et al (2015) Biocatalysis at work: applications in the development of Sagopilone. ChemMedChem 10:1240–1248

    Article  CAS  PubMed  Google Scholar 

  • Graybill WS, Coleman RL (2016) Folate receptor-targeted therapeutics for ovarian cancer. Drugs Future 41:137–143

    Article  Google Scholar 

  • Herzog TJ, Kutarska E, Bidzińsk M et al (2016) Adverse event profile by folate receptor status for vintafolide and pegylated liposomal doxorubicin in combination, versus pegylated liposomal doxorubicin alone, in platinum-resistant ovarian cancer: Exploratory analysis of the Phase II PRECEDENT trial. Int J Gynecol Cancer 26:1580–1585

    Article  PubMed  Google Scholar 

  • Huang M, Gao H, Chen Y et al (2007) Chimmitecan, a novel 9-substituted camptothecin, with improved anticancer pharmacologic profiles in vitro and in vivo. Clin Cancer Res 13:1298–1307

    Article  CAS  PubMed  Google Scholar 

  • Huang G, Wang H, Yang LX (2010) Enhancement of radiation-induced DNA damage and inhibition of its repair by a novel camptothecin analog. Anticancer Res 30:937–944

    PubMed  Google Scholar 

  • Joerger M, Hess D, Delmonte A et al (2015) Integrative population pharmacokinetic and pharmacodynamic dose finding approach of the new camptothecin compound namitecan (ST1968). Br J Clin Pharmacol 80:128–138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones RP, Malik HZ, Fenwick SW et al (2016) PARAGON II – a single arm multicentre phase II study of neoadjuvant therapy using irinotecan bead in patients with resectable liver metastases from colorectal cancer. Eur J Surg Oncol 42:1866–1872

    Article  CAS  PubMed  Google Scholar 

  • Kusari S, Lamsho M, Kusari P et al (2014) Endophytes are hidden producers of maytansine in Putterlickia roots. J Nat Prod 77:2577–2584

    Article  CAS  PubMed  Google Scholar 

  • Kusari P, Kusari S, Eckelmann D et al (2016) Cross-species biosynthesis of maytansine in Maytenus serrata. RSC Adv 6:10011–10016

    Article  CAS  Google Scholar 

  • Lambert JM (2012) Drug-conjugated antibodies for the treatment of cancer. Br J Clin Pharmacol 76:248–262

    Article  PubMed Central  Google Scholar 

  • Lee KW, Lee KH, Zang DY et al (2015) Phase I/II study of weekly Oraxol for the second-line treatment of patients with metastatic or recurrent gastric cancer. Oncologist 20(8):896–897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li JY, Perry SR, Muniz-Medina V et al (2016) A biparatopic HER2-targeting antibody-drug conjugate induces tumor regression in primary models refractory to or ineligible for HER2-targeted therapy. Cancer Cell 29(1):117–129

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Kantarjian H, Plunkett W (2012) Sapacitabine for cancer. Expert Opin Investig Drugs 21(4):541–555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mantaj J, Jackson PJM, Rahman KM et al (2017) From anthramycin to pyrrolobenzodiazepine (PBD) containing antibody-drug conjugates (ADCs). Angew Chem Int Ed Engl 56(2):462–488

    Article  CAS  PubMed  Google Scholar 

  • Martín MJ, Coello L, Fernández R et al (2013) Isolation and first total synthesis of PM050489 and PM060184, two new marine anticancer compounds. J Am Chem Soc 135(27):10164–10171

    Article  PubMed  Google Scholar 

  • Montalban-Bravo G, Garcia-Manero G (2015) Novel drugs for older patients with acute myeloid leukemia. Leukemia 29(4):760–769

    Article  CAS  PubMed  Google Scholar 

  • Nakada T, Masuda T, Naito H et al (2016) Novel antibody drug conjugates containing exatecan derivative-based cytotoxic payloads. Bioorg Med Chem Lett 26:1542–1545

    Article  CAS  PubMed  Google Scholar 

  • Newman DJ (2008) Natural products as leads to potential drugs: An old process or the new hope for drug discovery? J Med Chem 51:2589–2599

    Article  CAS  PubMed  Google Scholar 

  • Newman DJ (2016) Predominately uncultured microbes as sources of bioactive agents. Front Microbiol 7:1832

    Article  PubMed  PubMed Central  Google Scholar 

  • Newman DJ (2017) Recent advances in screening and identification of novel biologically active natural compounds. F1000 Fac Rev 6:783

    Article  Google Scholar 

  • Newman DJ, Cragg GM (2012) Natural products as sources of new drugs over the 30 years from 1981 to 2010. J Nat Prod 75(3):311–335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Newman DJ, Cragg GM (2014) Making sense of structures by utilizing Mother Nature’s chemical libraries as leads to potential drugs. In: Osbourn A, Goss RJ (eds) Natural products: discourse, diversity and design. Wiley, New York, pp 397–411

    Chapter  Google Scholar 

  • Newman DJ, Cragg GM (2015) Endophytic and epiphytic microbes as “sources” of bioactive agents. Front Chem 3:34

    Article  PubMed  PubMed Central  Google Scholar 

  • Newman DJ, Cragg GM (2016a) Natural product scaffolds of value in medicinal chemistry. In: Brase S (ed) Privileged scaffolds in medicinal chemistry. Royal Society of Chemistry, London, pp 348–378

    Google Scholar 

  • Newman DJ, Cragg GM (2016b) Natural products as sources of new drugs from 1981 to 2014. J Nat Prod 79(3):629–661

    Article  CAS  PubMed  Google Scholar 

  • Newman DJ, Cragg GM (2017) Current status of marine-derived compounds as warheads in anti-tumor drug candidates. Mar Drugs 15(4) 99.

    Article  PubMed Central  Google Scholar 

  • Newman DJ, Cragg GM, Snader KM (2000) The influence of natural products upon drug discovery. Nat Prod Rep 17(3):215–234

    Article  CAS  PubMed  Google Scholar 

  • Newman DJ, Cragg GM, Kingston DGI (2015) Natural products as pharmaceuticals and sources for lead structures. In: Aldous D, Rognan D, Raboisson P et al (eds) The practice of medicinal chemistry, 4th edn. Elsevier, Amsterdam, pp 102–138

    Google Scholar 

  • Pera B, Barasoain I, Pantazopoulou A et al (2013) New interfacial microtubule inhibitors of marine origin, PM050489/PM060184, with potent antitumor activity and a distinct mechanism. ACS Chem Biol 8(9):2084–2094

    Article  CAS  PubMed  Google Scholar 

  • Santamaría NG, Robles CM, Giraudon C et al (2016) Lurbinectedin specifically triggers the degradation of phosphorylated RNA polymerase II and the formation of DNA breaks in cancer cells. Mol Cancer Ther 15(10):2399–2412

    Article  Google Scholar 

  • Shi J, Kantoff PW, Wooster R et al (2017) Cancer nanomedicine: Progress, challenges and opportunities. Nat Rev Cancer 17(1):20–37

    Article  CAS  PubMed  Google Scholar 

  • Wakimoto T, Egami Y, Nakashima Y et al (2014) Calyculin biogenesis from a pyrophosphate protoxin produced by a sponge symbiont. Nat Chem Biol 10(8):648–655

    Article  CAS  PubMed  Google Scholar 

  • Wicki A, Ritschard R, Loesch U et al (2015) Large-scale manufacturing of GMP-compliant anti-EGFR targeted nanocarriers: Production of doxorubicin-loaded ant-EGFR-immunoliposomes for a first-in-man clinical trial. Int J Pharm 484(1–2):8–15

    Article  CAS  PubMed  Google Scholar 

  • Wilson MC, Mori T, Ruckert C et al (2014) An environmental bacterial taxon with a large and distinct metabolic repertoire. Nature 506(7486):58–62

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cragg, G.M., Newman, D.J. (2018). Natural Products as Sources of Anticancer Agents: Current Approaches and Perspectives. In: Cechinel Filho, V. (eds) Natural Products as Source of Molecules with Therapeutic Potential. Springer, Cham. https://doi.org/10.1007/978-3-030-00545-0_8

Download citation

Publish with us

Policies and ethics