Skip to main content

Advertisement

Log in

Role of glucosinolates in plant invasiveness

  • Published:
Phytochemistry Reviews Aims and scope Submit manuscript

Abstract

Many plants have been intentionally or accidentally introduced to new habitats where some of them now cause major ecological and economic threats to natural and agricultural ecosystems. The potential to become invasive might depend on plant characteristics, as well as on specific interactions with other organisms acting as symbionts or antagonists, including other plants, microbes, herbivores, or pollinators. The invasion potential furthermore depends on abiotic conditions in the habitat. Several species of the Brassicaceae, well known for their glucosinolate–myrosinase defence system, are invasive species. Various factors are reviewed here that might explain why these species were so successful in colonising new areas. Specific emphasis is laid on the role of glucosinolates and their hydrolysis products in the invasion potential. This particular defence system is involved specifically in plant–plant, plant–microbe and plant–insect interactions. Most research has been done on the mechanisms underlying invasion success of Alliaria petiolata and Brassica spp., followed by Bunias orientalis and Lepidium draba. Some examples are also given for plants that are not necessarily considered as invasives, but which were well investigated with respect to their interference potential with their biotic environment. For each species, most likely a combination of different plant characteristics enhanced the competitive abilities and led to diverse invasive phenotypes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Agrawal AA, Kotanen PM (2003) Herbivores and the success of exotic plants: a phylogenetically controlled experiment. Ecol Lett 6:712–715. doi:10.1046/j.1461-0248.2003.00498.x

    Article  Google Scholar 

  • Alpert P, Bone E, Holzapfel C (2000) Invasiveness, invasibility and the role of environmental stress in the spread of non-native plants. Perspect Plant Ecol Evol Syst 3:52–66. doi:10.1078/1433-8319-00004

    Article  Google Scholar 

  • Angelini L, Lazzeri L, Galletti S, Cozzani A, Macchia M, Palmieri S (1998) Antigerminative activity of three glucosinolate-derived products generated by myrosinase hydrolysis. Seed Sci Technol 26:771–779

    Google Scholar 

  • Baret S, Maurice S, Le Bourgeois T, Strasberg D (2004) Altitudinal variation in fertility and vegetative growth in the invasive plant Rubus alceifolius Poiret (Rosaceae), on Réunion island. Plant Ecol 172:265–273. doi:10.1023/B:VEGE.0000026345.67250.d2

    Article  Google Scholar 

  • Bell DT, Muller CH (1973) Dominance of California annual grasslands by Brassica nigra. Am Midl Nat 90:277–299. doi:10.2307/2424453

    Article  Google Scholar 

  • Bialy Z, Oleszek W, Lewis JA, Fenwick GR (1990) Allelopathic potential of glucosinolates (mustard oil glycosides) and their degradation products against wheat. Plant Soil 129:227–281

    Google Scholar 

  • Bidart-Bouzat MG, Mithen R, Berenbaum MR (2005) Elevated CO2 influences herbivory-induced defense responses of Arabidopsis thaliana. Oecologia 145:415–424. doi:10.1007/s00442-005-0158-5

    Article  PubMed  Google Scholar 

  • Blande JD, Pickett JA, Poppy GM (2007) A comparison of semiochemically mediated interactions involving specialist and generalist Brassica-feeding aphids and the braconid parasitoid Diaeretiella rapae. J Chem Ecol 33:767–779. doi:10.1007/s10886-007-9264-7

    Article  PubMed  CAS  Google Scholar 

  • Bleeker W, Matthies A (2005) Hybrid zones between invasive Rorippa austriaca and native R. sylvestris (Brassicaceae) in Germany: ploidy levels and patterns of fitness in the field. Heredity 94:664–670. doi:10.1038/sj.hdy.6800687

    Article  PubMed  CAS  Google Scholar 

  • Blossey B, Nötzold R (1995) Evolution of increased competitive ability in invasive nonindigenous plants: a hypothesis. J Ecol 83:887–889. doi:10.2307/2261425

    Article  Google Scholar 

  • Blossey B, Nuzzo V, Hinz H, Gerber E (2001) Developing biocontrol of Alliaria petiolata (M. Bieb.) Cavara and Grande (garlic mustard). Nat Areas J 21:357–367

    Google Scholar 

  • Borek V, Morra MJ, Brown PD, McCaffrey JP (1994) Allelochemicals produced during sinigrin decomposition in soil. J Agric Food Chem 42:1030–1034. doi:10.1021/jf00040a037

    Article  CAS  Google Scholar 

  • Borek V, Morra MJ, McCaffrey JP (1996) Myrosinase activity in soil extracts. Soil Sci Soc Am J 60:1792–1797

    CAS  Google Scholar 

  • Bossdorf O, Prati D, Auge H, Schmid B (2004a) Reduced competitive ability in an invasive plant. Ecol Lett 7:346–353. doi:10.1111/j.1461-0248.2004.00583.x

    Article  Google Scholar 

  • Bossdorf O, Schröder S, Prati D, Auge H (2004b) Palatability and tolerance to simulated herbivory in native and introduced populations of Alliaria petiolata (Brassicaceae). Am J Bot 91:856–862. doi:10.3732/ajb.91.6.856

    Article  Google Scholar 

  • Bossdorf O, Auge H, Lafuma L, Rogers WE, Siemann E, Prati D (2005) Phenotypic and genetic differentiation between native and introduced plant populations. Oecologia 144:1–11. doi:10.1007/s00442-005-0070-z

    Article  PubMed  Google Scholar 

  • Bradburne RP, Mithen R (2000) Glucosinolate genetics and the attraction of the aphid parasitoid Diaeretiella rapae to Brassica. Proc R Soc Lond B Biol Sci 267:89–95. doi:10.1098/rspb.2000.0971

    Article  CAS  Google Scholar 

  • Bridges M, Jones AME, Bones AM, Hodgson C, Cole R, Bartlet E et al (2002) Spatial organization of the glucosinolate–myrosinase system in Brassica specialist aphids is similar to that of the host plant. Proc R Soc Lond B Biol Sci 269:187–191. doi:10.1098/rspb.2001.1861

    Article  CAS  Google Scholar 

  • Brown PD, Morra MJ (1995) Glucosinolate-containing plant tissues as bioherbicides. J Agric Food Chem 43:3070–3074. doi:10.1021/jf00060a015

    Article  CAS  Google Scholar 

  • Brown PD, Morra MJ (1996) Hydrolysis products of glucosinolates in Brassica napus tissues as inhibitors of seed germination. Plant Soil 181:307–316. doi:10.1007/BF00012065

    Article  CAS  Google Scholar 

  • Brown PD, Morra MJ, McCaffrey JP, Auld DL, Williams L (1991) Allelochemicals produced during glucosinolate degradation in soil. J Chem Ecol 17:2021–2034. doi:10.1007/BF00992585

    Article  CAS  Google Scholar 

  • Bukovinszky T, Gols R, Posthumus MA, Vet LEM, van Lenteren JC (2005) Variation in plant volatiles and attraction of the parasitoid Diadegma semiclausum (Hellen). J Chem Ecol 31:461–480. doi:10.1007/s10886-005-2019-4

    Article  PubMed  CAS  Google Scholar 

  • Buschmann H, Edwards PJ, Dietz H (2005) Variation in growth pattern and response to slug damage among native and invasive provenances of four perennial Brassicaceae species. J Ecol 93:322–334. doi:10.1111/j.1365-2745.2005.00991.x

    Article  Google Scholar 

  • Buschmann H, Edwards PJ, Dietz H (2006) Responses of native and invasive Brassicaceae species to slug herbivory. Acta Oecol Int J Ecol 30:126–135. doi:10.1016/j.actao.2005.11.006

    Article  Google Scholar 

  • Callaway RM, Aschehoug ET (2000) Invasive plants versus their new and old neighbors: a mechanism for exotic invasion. Science 290:521–523. doi:10.1126/science.290.5491.521

    Article  PubMed  CAS  Google Scholar 

  • Callaway RM, Ridenour WM (2004) Novel weapons: invasive success and the evolution of increased competitive ability. Front Ecol Environ 2:436–443

    Article  Google Scholar 

  • Callaway RM, Thelen GC, Rodriguez A, Holben WE (2004) Soil biota and exotic plant invasion. Nature 427:731–733. doi:10.1038/nature02322

    Article  PubMed  CAS  Google Scholar 

  • Carey EV, Marler MJ, Callaway RM (2004) Mycorrhizae transfer carbon from a native grass to an invasive weed: evidence from stable isotopes and physiology. Plant Ecol 172:133–141. doi:10.1023/B:VEGE.0000026031.14086.f1

    Article  Google Scholar 

  • Chew FS (1988) Biological effects of glucosinolates. In: Cutler HG (ed) Biologically active natural products—potential use in agriculture. In: American chemical society symposium, Washington DC, pp 155–181

  • Chittka L, Schurkens S (2001) Successful invasion of a floral market—an exotic Asian plant has moved in on Europe’s river-banks by bribing pollinators. Nature 411:653–653. doi:10.1038/35079676

    Article  PubMed  CAS  Google Scholar 

  • Choesin DN, Boerner REJ (1991) Allyl isothiocyanate release and the allelopathic potential of Brassica napus (Brassicaceae). Am J Bot 78:1083–1090. doi:10.2307/2444897

    Article  CAS  Google Scholar 

  • Cipollini DF (2002) Variation in the expression of chemical defenses in Alliaria petiolata in the field and common garden. Am J Bot 89:1422–1430. doi:10.3732/ajb.89.9.1422

    Article  CAS  Google Scholar 

  • Cipollini D, Gruner B (2007) Cyanide in the chemical arsenal of garlic mustard, Alliaria petiolata. J Chem Ecol 33:85–94. doi:10.1007/s10886-006-9205-x

    Article  PubMed  CAS  Google Scholar 

  • Cipollini DF, Mbagwu J, Barto K, Hillstrom C, Enright S (2005) Expression of constitutive and inducible chemical defenses in native and invasive populations of Alliaria petiolata. J Chem Ecol 31:1255–1267. doi:10.1007/s10886-005-5284-3

    Article  PubMed  CAS  Google Scholar 

  • Ciska E, Martyniak-Przybyszewska B, Kozlowska H (2000) Content of glucosinolates in cruciferous vegetables grown at the same site for two years under different climatic conditions. J Agric Food Chem 48:2862–2867. doi:10.1021/jf981373a

    Article  PubMed  CAS  Google Scholar 

  • Cripps MG, Schwarzländer M, McKenney JL, Hinz HL, Price WJ (2006) Biogeographical comparison of the arthropod herbivore communities associated with Lepidium draba in its native, expanded and introduced ranges. J Biogeogr 33:2107–2119. doi:10.1111/j.1365-2699.2006.01560.x

    Article  Google Scholar 

  • Dietz H, Winterhalter P (1996) Phytotoxic constituents from Bunia orientalis leaves. Phytochemistry 42:1005–1010. doi:10.1016/0031-9422(96)00020-9

    Article  CAS  Google Scholar 

  • Dietz H, Steinlein T, Ullmann I (1999) Establishment of the invasive perennial herb Bunias orientalis L.: an experimental approach. Acta Oecol 20:621–632. doi:10.1016/S1146-609X(99)00104-6

    Article  Google Scholar 

  • Enright SM, Cipollini D (2007) Infection by powdery mildew Erysiphe cruciferarum (Erysiphaceae) strongly affects growth and fitness of Alliaria petiolata (Brassicaceae). Am J Bot 94:1813–1820. doi:10.3732/ajb.94.11.1813

    Article  Google Scholar 

  • Eppstein MJ, Molofsky J (2007) Invasiveness in plant communities with feedbacks. Ecol Lett 10:253–263. doi:10.1111/j.1461-0248.2007.01017.x

    Article  PubMed  Google Scholar 

  • Francis A, Warwick SI (2007) The biology of invasive alien plants in Canada. 8. Lepidium latifolium L. Can J Plant Sci 87:639–658

    Google Scholar 

  • Frenzel M, Brandl R (2003) Diversity and abundance patterns of phytophagous insect communities on alien and native host plants in the Brassicaceae. Ecography 26:723–730. doi:10.1111/j.0906-7590.2003.03649.x

    Article  Google Scholar 

  • Gaskin JF, Schaal BA (2002) Hybrid Tamarix widespread in US invasion and undetected in native Asian range. Proc Natl Acad Sci USA 99:11256–11259. doi:10.1073/pnas.132403299

    Article  PubMed  CAS  Google Scholar 

  • Giamoustaris A, Mithen R (1995) The effect of modifying the glucosinolate content of leaves of oilseed rape (Brassica napus ssp. oleifera) on its interaction with specialist and generalist pests. Ann Appl Biol 126:347–363. doi:10.1111/j.1744-7348.1995.tb05371.x

    Article  CAS  Google Scholar 

  • Gimsing AL, Kirkegaard JA (2008) Glucosinolates and biofumigation: fate of glucosinolates and their hydrolysis products in soil. Phytochem Rev. doi:10.1007/s11101-008-9105-5

    Google Scholar 

  • Girling RD, Hassall M, Turner JG, Poppy GM (2006) Behavioural responses of the aphid parasitoid Diaeretiella rapae to volatiles from Arabidopsis thaliana induced by Myzus persicae. Entomol Exp Appl 120:1–10. doi:10.1111/j.1570-7458.2006.00423.x

    Article  Google Scholar 

  • Goodwin J (1992) The role of mycorrhizal fungi in competitive interactions among native bunchgrasses and alien weeds—a review and synthesis. Northwest Sci 66:251–260

    Google Scholar 

  • Halbrendt JM (1996) Allelopathy in the management of plant–parasitic nematodes. J Nematol 28:8–14

    CAS  PubMed  Google Scholar 

  • Halkier BA, Gershenzon J (2006) Biology and biochemistry of glucosinolates. Annu Rev Plant Biol 57:303–333. doi:10.1146/annurev.arplant.57.032905.105228

    Article  PubMed  CAS  Google Scholar 

  • Haribal M, Renwick JAA (1998) Isovitexin 6″-O-β-d-glucopyranoside: a feeding deterrent to Pieris napi oleracea from Alliaria petiolata. Phytochemistry 47:1237–1240. doi:10.1016/S0031-9422(97)00740-1

    Article  CAS  Google Scholar 

  • Haribal M, Renwick JAA (2001) Seasonal and population variation in flavonoid and alliarinoside content of Alliaria petiolata. J Chem Ecol 27:1585–1594. doi:10.1023/A:1010406224265

    Article  PubMed  CAS  Google Scholar 

  • http://www.issg.org/database/species

  • Hierro JL, Maron JL, Callaway RM (2005) A biogeographical approach to plant invasions: the importance of studying exotics in their introduced and native range. J Ecol 93:5–15. doi:10.1111/j.0022-0477.2004.00953.x

    Article  Google Scholar 

  • Jalas J, Suominen J (1994) Atlas Florae Europaeae, 10—Cruciferae (Ricotia to Raphanus). Helsinki

  • Jalas J, Suominen J, Lampinen R (1996) Atlas Florae Europaeae, 11—Cruciferae (Sisymbrium to Aubrieta). Helsinki

  • Jönsson M, Lindkvist A, Anderson P (2005) Behavioural responses in three ichneumonid pollen beetle parasitoids to volatiles emitted from different phenological stages of oilseed rape. Entomol Exp Appl 115:363–369. doi:10.1111/j.1570-7458.2005.00271.x

    Article  Google Scholar 

  • Joshi J, Vrieling K (2005) The enemy release and EICA hypothesis revisited: incorporating the fundamental difference between specialist and generalist herbivores. Ecol Lett 8:704–714. doi:10.1111/j.1461-0248.2005.00769.x

    Article  Google Scholar 

  • Kawabata J, Fukushi Y, Hayashi R, Suzuki K, Mishima Y, Yamane A et al (1989) 8-Methylsulfinyloctyl isothiocyanate as an allelochemical candidate from Rorippa sylvestris Besser. Agric Biol Chem 53:3361–3362

    CAS  Google Scholar 

  • Keane RM, Crawley MJ (2002) Exotic plant invasions and the enemy release hypothesis. Trends Ecol Evol 17:164–170. doi:10.1016/S0169-5347(02)02499-0

    Article  Google Scholar 

  • Kiemnec GL, McInnis ML (2002) Hoary cress (Cardaria draba) root extract reduces germination and root growth of five plant species. Weed Technol 16:231–234. doi:10.1614/0890-037X(2002)016[0231:HCCDRE]2.0.CO;2

    Article  Google Scholar 

  • Klironomos JN (2002) Feedback with soil biota contributes to plant rarity and invasiveness in communities. Nature 417:67–70. doi:10.1038/417067a

    Article  PubMed  CAS  Google Scholar 

  • Kudoh H, Nakayama M, Lihova J, Marhold K (2007) Does invasion involve alternation of germination requirements? A comparative study between native and introduced strains of an annual Brassicaceae, Cardamine hirsuta. Ecol Res 22:869–875. doi:10.1007/s11284-007-0417-5

    Article  Google Scholar 

  • Lankau RA (2007) Specialist and generalist herbivores exert opposing selection on a chemical defense. New Phytol 175:176–184. doi:10.1111/j.1469-8137.2007.02090.x

    Article  PubMed  Google Scholar 

  • Lankau RA, Strauss SY (2007) Mutual feedbacks maintain both genetic and species diversity in a plant community. Science 317:1561–1563. doi:10.1126/science.1147455

    Article  PubMed  CAS  Google Scholar 

  • Larson L, Kiemnec G, Smergut T (2000) Hoary cress reproduction in a sagebrush ecosystem. J Range Manage 53:556–559. doi:10.2307/4003658

    Article  Google Scholar 

  • Lau JA, Puliafico KP, Kopshever JA, Steltzer H, Jarvis EP, Schwarzländer M et al (2008) Inference of allelopathy is complicated by effects of activated carbon on plant growth. New Phytol 178:412–423. doi:10.1111/j.1469-8137.2007.02360.x

    Article  PubMed  CAS  Google Scholar 

  • Lazzeri L, Curto G, Leoni O, Dallavalle E (2004) Effects of glucosinolates and their enzymatic hydrolysis via myrosinase on the root-knot nematode Meloidogyne incognita (Kofoid et White) Chitw. J Agric Food Chem 52:6703–6707. doi:10.1021/jf030776u

    Article  PubMed  CAS  Google Scholar 

  • Lee CE (2002) Evolutionary genetics of invasive species. Trends Ecol Evol 17:386–391. doi:10.1016/S0169-5347(02)02554-5

    Article  Google Scholar 

  • Lee PLM, Patel RM, Conlan RS, Wainwright SJ, Hipkin CR (2004) Comparison of genetic diversities in native and alien populations of hoary mustard (Hirschfeldia incana L. Lagreze-Fossat). Int J Plant Sci 165:833–843. doi:10.1086/422043

    Article  Google Scholar 

  • Lewis KC, Bazzaz FA, Liao Q, Orians CM (2006) Geographic patterns of herbivory and resource allocation to defense, growth, and reproduction in an invasive biennial, Alliaria petiolata. Oecologia 148:384–395. doi:10.1007/s00442-006-0380-9

    Article  PubMed  Google Scholar 

  • Linde M, Diel S, Neuffer B (2001) Flowering ecotypes of Capsella bursa-pastoris (L.) Medik. (Brassicaceae) analysed by a cosegregation of phenotypic characters (QTL) and molecular markers. Ann Bot (Lond) 87:91–99. doi:10.1006/anbo.2000.1308

    Article  CAS  Google Scholar 

  • Louda SM, Collinge SK (1992) Plant-resistance to insect herbivores—a field-test of the environmental-stress hypothesis. Ecology 73:153–169. doi:10.2307/1938728

    Article  Google Scholar 

  • Mack RN, Simberloff D, Lonsdale WM, Evans H, Clout M, Bazzaz FA (2000) Biotic invasions: causes, epidemiology, global consequences, and control. Ecol Appl 10:689–710. doi:10.1890/1051-0761(2000)010[0689:BICEGC]2.0.CO;2

    Article  Google Scholar 

  • Maron JL, Vilà M (2001) When do herbivores affect plant invasion? Evidence for the natural enemies and biotic resistance hypotheses. Oikos 95:361–373. doi:10.1034/j.1600-0706.2001.950301.x

    Article  Google Scholar 

  • Mason-Sedun W, Jessop RS, Lovett JV (1986) Differential phytotoxicity among species and cultivars of the genus Brassica to wheat. 1. Laboratory and field screening of species. Plant Soil 93:3–16. doi:10.1007/BF02377141

    Article  Google Scholar 

  • Mattiacci L, Rocca BA, Scascighini N, D’Alessandro M, Hern A, Dorn S (2001) Systemically induced plant volatiles emitted at the time of “danger”. J Chem Ecol 27:2233–2252. doi:10.1023/A:1012278804105

    Article  PubMed  CAS  Google Scholar 

  • McCarthy BC, Hanson SL (1998) An assessment of the allelopathic potential of the invasive weed Alliaria petiolata (Brassicaceae). Castanea 63:68–73

    Google Scholar 

  • McKenney JL (2005) An inter-continental comparison of vigor and herbivory for the invasive plant Lepidium draba. MSc Thesis, University of Idaho, Moscow, USA

  • McKenney JL, Cripps MG, Price WJ, Hinz HL, Schwarzländer M (2007) No difference in competitive ability between invasive North-American and native European Lepidium draba populations. Plant Ecol 193:293–303. doi:10.1007/s11258-007-9268-y

    Article  Google Scholar 

  • Ménard R, Larue J-P, Silué D, Thouvenot D (1999) Glucosinolates in cauliflower as biochemical markers for resistance against downy mildew. Phytochemistry 52:29–35. doi:10.1016/S0031-9422(99)00165-X

    Article  Google Scholar 

  • Monaco TA, Johnson DA, Creech JE (2005) Morphological and physiological responses of the invasive weed Isatis tinctoria to contrasting light, soil-nitrogen and water. Weed Res 45:460–466. doi:10.1111/j.1365-3180.2005.00480.x

    Article  Google Scholar 

  • Mooney HA, Cleland EE (2001) The evolutionary impact of invasive species. Proc Natl Acad Sci USA 98:5446–5451. doi:10.1073/pnas.091093398

    Article  PubMed  CAS  Google Scholar 

  • Muller CH (1969) Allelopathy as a factor in ecological process. Vegetatio 16:348–357. doi:10.1007/BF00332847

    Article  Google Scholar 

  • Müller C, Martens N (2005) Testing predictions of the ‘evolution of increased competitive ability’ hypothesis for an invasive crucifer. Evol Ecol 19:533–550. doi:10.1007/s10682-005-1022-0

    Article  Google Scholar 

  • Müller-Schärer H, Steinger T (2004) Predicting evolutionary change in invasive, exotic plants and its consequence for plant–herbivore interactions. In: Ehler LE, Sforza R, Mateille T (eds) Genetics, evolution and biological control. CABI Publishing, Wellingford, pp 137–162

    Google Scholar 

  • Müller-Schärer H, Schaffner U, Steinger T (2004) Evolution in invasive plants: implications for biological control. Trends Ecol Evol 19:417–422. doi:10.1016/j.tree.2004.05.010

    Article  PubMed  Google Scholar 

  • Mulligan GA, Findlay JN (1974) The biology of Canadian weeds. 3. Cardaria draba, C. chalepensis, and C. pubescens. Can J Plant Sci 54:149–160

    Article  Google Scholar 

  • Norsworthy JK (2003) Allelopathic potential of wild radish (Raphanus raphanistrum). Weed Technol 17:307–313. doi:10.1614/0890-037X(2003)017[0307:APOWRR]2.0.CO;2

    Article  Google Scholar 

  • Nuzzo V (1993) Distribution and spread of the invasive biennial Alliaria petiolata (garlic mustard) in North-America. In: McKnight B (ed) Biological pollution: the control and impact of invasive exotic species. Indiana Academy of Science, Indianapolis, pp 137–145

    Google Scholar 

  • Nuzzo V (1999) Invasion pattern of the herb garlic mustard (Alliaria petiolata) in high quality forests. Biol Invasions 1:169–179. doi:10.1023/A:1010009514048

    Article  Google Scholar 

  • Pimentel D (2002) Biological invasions: economic and environmental costs of alien plant, animal, and microbe species. CRC, Boca Raton

    Google Scholar 

  • Pokorny ML, Krueger-Mangold JM (2007) Evaluating montana’s dyer’s woad (Isatis tinctoria) cooperative eradication project. Weed Technol 21:262–269. doi:10.1614/WT-06-048.1

    Article  Google Scholar 

  • Prati D, Bossdorf O (2004) Allelopathic inhibition of germination by Alliaria petiolata (Brassicaceae). Am J Bot 91:285–288. doi:10.3732/ajb.91.2.285

    Article  Google Scholar 

  • Pyšek P, Richardson DM, Pergil J, Jarošík V, Sixtová Z, Weber E (2008) Geographical and taxonomic biases in invasion ecology. Trends Ecol Evol 23:237–244. doi:10.1016/j.tree.2008.02.002

    Article  PubMed  Google Scholar 

  • Qasem JR (1994) Allelopathic effect of white top (Lepidium draba) on wheat and barley. Allelopath J 1:29–40

    Google Scholar 

  • Rahman L, Somers T (2005) Suppression of root knot nematode (Meloidogyne javanica) after incorporation of Indian mustard cv. Nemfix as green manure and seed meal in vineyards. Australas Plant Pathol 34:77–83. doi:10.1071/AP04081

    Article  Google Scholar 

  • Reifenrath K, Müller C (2007) Species-specific and leaf-age dependent effects of ultraviolet radiation on two Brassicaceae. Phytochemistry 68:875–885. doi:10.1016/j.phytochem.2006.12.008

    Article  PubMed  CAS  Google Scholar 

  • Renwick JAA (2002) The chemical world of crucivores: lures, treats and traps. Entomol Exp Appl 104:35–42. doi:10.1023/A:1021231732022

    Article  CAS  Google Scholar 

  • Renwick JAA, Zhang WQ, Haribal M, Attygalle AB, Lopez KD (2001) Dual chemical barriers protect a plant against different larval stages of an insect. J Chem Ecol 27:1575–1583. doi:10.1023/A:1010402107427

    Article  PubMed  CAS  Google Scholar 

  • Roberts KJ, Anderson RC (2001) Effect of garlic mustard [Alliaria petiolata (Bieb. Cavara & Grande)] extracts on plants and arbuscular mycorrhizal (AM) fungi. Am Midl Nat 146:146–152. doi:10.1674/0003-0031(2001)146[0146:EOGMAP]2.0.CO;2

    Article  Google Scholar 

  • Scheublin TR, van Logtestijn RSP, van der Heijden MGA (2007) Presence and identity of arbuscular mycorrhizal fungi influence competitive interactions between plant species. J Ecol 95:631–638. doi:10.1111/j.1365-2745.2007.01244.x

    Article  CAS  Google Scholar 

  • Schierenbeck KA, Mack RN, Sharitz RR (1994) Effects of herbivory on growth and biomass allocation in native and introduced species of Lonicera. Ecology 75:1661–1672. doi:10.2307/1939626

    Article  Google Scholar 

  • Schreiner RP, Koide RT (1993a) Antifungal compounds from the roots of mycotrophic and non-mycotrophic plant-species. New Phytol 123:99–105

    CAS  Google Scholar 

  • Schreiner RP, Koide RT (1993b) Mustards, mustard oils and mycorrhizas. New Phytol 123:107–113

    CAS  Google Scholar 

  • Schurkens S, Chittka L (2001) The significance of the invasive crucifer species Bunias orientalis (Brassicaceae) as a nectar source for central European insects. Entomol Gen 25:115–120

    Google Scholar 

  • Sebald O, Seybold SJ, Philippi G (1993) Die Farn- und Blütenpflanzen Baden-Württembergs. Ulmer, Stuttgart

    Google Scholar 

  • Siemens DH, Mitchell-Olds T (1996) Glucosinolates and herbivory by specialists (Coleoptera: Chrysomelidae, Lepidoptera: Plutellidae): consequences of concentration and induced resistance. Environ Entomol 25:1344–1353

    CAS  Google Scholar 

  • Siemens DH, Garner SH, Mitchell-Olds T, Callaway RM (2002) Cost of defense in the context of plant competition: Brassica rapa may grow and defend. Ecology 83:505–517

    Google Scholar 

  • Smith BJ, Kirkegaard JA (2002) In vitro inhibition of soil microorganisms by 2-phenylethyl isothiocyanate. Plant Pathol 51:585–593. doi:10.1046/j.1365-3059.2002.00744.x

    Article  CAS  Google Scholar 

  • Stinson KA, Campbell SA, Powell JR, Wolfe BE, Callaway RM, Thelen GC et al (2006) Invasive plant suppresses the growth of native tree seedlings by disrupting belowground mutualisms. PLoS Biol 4:727–731. doi:10.1371/journal.pbio.0040140

    Article  CAS  Google Scholar 

  • Strauss SY, Siemens DH, Decher MB, Mitchell-Olds T (1999) Ecological costs of plant resistance to herbivores in the currency of pollination. Evol Int J Org Evol 53:1105–1113. doi:10.2307/2640815

    Google Scholar 

  • Strauss SY, Rudgers JA, Lau JA, Irwin RE (2002) Direct and ecological costs of resistance to herbivory. Trends Ecol Evol 17:278–285. doi:10.1016/S0169-5347(02)02483-7

    Article  Google Scholar 

  • Travers-Martin N, Müller C (2007) Specificity of induction responses in a Brassicaceae and their effects on a specialist herbivore. J Chem Ecol 33:1582–1597. doi:10.1007/s10886-007-9322-1

    Article  PubMed  CAS  Google Scholar 

  • Tutin TG, Heywood VH, Burges NA, Moore DM, Valentine D, Walters SM et al (1993) Flora Europaea. Cambridge University Press, Cambridge

    Google Scholar 

  • van der Meijden E (1996) Plant defence, an evolutionary dilemma. Contrasting effects of (specialist and generalist) herbivores and natural enemies. Entomol Exp Appl 80:307–310. doi:10.1007/BF00194780

    Article  Google Scholar 

  • van Loon JJA, de Boer JG, Dicke M (2000) Parasitoid–plant mutualism: parasitoid attack of herbivore increases plant reproduction. Entomol Exp Appl 97:219–227. doi:10.1023/A:1004032225239

    Article  Google Scholar 

  • Vaughn SF, Berhow MA (1999) Allelochemicals isolated from tissues of the invasive weed garlic mustard (Alliaria petiolata). J Chem Ecol 25:2495–2504. doi:10.1023/A:1020874124645

    Article  CAS  Google Scholar 

  • Vilà M, Weiner J (2004) Are invasive plant species better competitors than native plant species? Evidence from pair-wise experiments. Oikos 105:229–238. doi:10.1111/j.0030-1299.2004.12682.x

    Article  Google Scholar 

  • Voss EG (1985) Michigan flora. Part II. Dicots. Cranbrook Institute of Science, Bloomfield Hills

    Google Scholar 

  • Warwick SI, Francis A (2006) The biology of invasive alien plants in Canada. 6. Berteroa incana (L.) DC. Can J Plant Sci 86:1297–1309

    Google Scholar 

  • Weidenhamer JD (1996) Distinguishing resource competition and chemical interference: overcoming the methodological impasse. Agron J 88:866–875

    Google Scholar 

  • Weinig C, Brock MT, Dechaine JA, Welch SM (2007) Resolving the genetic basis of invasiveness and predicting invasions. Genetica 129:205–216. doi:10.1007/s10709-006-9015-7

    Article  PubMed  Google Scholar 

  • Williamson M (1996) Biological invasions. Chapman & Hall, Devon

    Google Scholar 

  • Wolfe LM (2002) Why alien invaders succeed: support for the escape-from-enemy hypothesis. Am Nat 160:705–711. doi:10.1086/343872

    Article  PubMed  Google Scholar 

  • Yamane A, Fujikura J, Ogawa H, Mizutani J (1992a) Isothiocyanates as allelopathic compounds from Rorippa indica Hiern (Cruciferae) roots. J Chem Ecol 18:1941–1954. doi:10.1007/BF00981918

    Article  CAS  Google Scholar 

  • Yamane A, Nishimura H, Mizutani J (1992b) Allelopathy of yellow fieldcress (Rorippa sylvestris): identification and characterization of phytotoxic constituents. J Chem Ecol 18:683–691. doi:10.1007/BF00994606

    Article  CAS  Google Scholar 

  • Zasada IA, Ferris H (2004) Nematode suppression with brassicaceous amendments: application based upon glucosinolate profiles. Soil Biol Biochem 36:1017–1024. doi:10.1016/j.soilbio.2003.12.014

    Article  CAS  Google Scholar 

  • Zeng RS, Mallik AU, Setliff E (2003) Growth stimulation of ectomycorrhizal fungi by root exudates of Brassicaceae plants: role of degraded compounds of indole glucosinolates. J Chem Ecol 29:1337–1355. doi:10.1023/A:1024257218558

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caroline Müller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Müller, C. Role of glucosinolates in plant invasiveness. Phytochem Rev 8, 227–242 (2009). https://doi.org/10.1007/s11101-008-9116-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11101-008-9116-2

Keywords

Navigation