Skip to main content

Advertisement

Log in

Flavanols: digestion, absorption and bioactivity

  • Review Article
  • Published:
Phytochemistry Reviews Aims and scope Submit manuscript

Abstract

Flavanols, or flavan-3-ols, are a family of bioactive compounds present in cocoa, red wine, green tea, red grapes, berries and apples. With a basic monomer unit of (−)-epicatechin or (+)-catechin, flavanols can be present in foods and beverages as monomers or oligomers (procyanidins). Most, but not all, procyanidins are degraded into monomer or dimer units prior to absorption. The bioavailability of flavanols can be influenced by multiple factors, including food processing, cooking, digestion, and biotransformation. Flavanols are potent antioxidants, scavenging free radicals in vitro and in vivo. While some of the actions of flavanols can be linked to antioxidant activities, other modes of action may also occur, including modulation of intracellular signaling, effects on membrane fluidity and regulation of cytokine release or action. Physiologically, flavanol-rich foods and beverages can affect platelet aggregation, vascular inflammation, endothelial nitric oxide metabolism, and may confer protective effects against neurodegeneration. Epidemiological data suggests that intake of cocoa, a rich source of flavanols, is inversely associated with 15-year cardiovascular and all-cause mortality in older males. (−)-Epicatechin and its metabolite, epicatechin-7-O-glucuronide, have been identified as independent predictors of some of the vascular effects associated with the consumption of a flavanol-rich beverage. Targeted dietary components and nutrition supplements that can influence the vascular system will be of great value in the prevention and treatment of chronic disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Agewall S, Wright S, Doughty RN, Whalley GA, Duxbury M, Sharpe N (2000) Does a glass of red wine improve endothelial function? Eur Heart J 21:74–78

    Article  PubMed  CAS  Google Scholar 

  • Andriambeloson E, Kleschyov AL, Muller B, Beretz A, Stoclet JC, Andriantsitohaina R (1997) Nitric oxide production and endothelium-dependent vasorelaxation induced by wine polyphenols in rat aorta. Br J Pharmacol 120:1053–1058

    Article  PubMed  CAS  Google Scholar 

  • Baba S, Osakabe N, Natsume M, Yasuda A, Takizawa T, Nakamura T, Terao J (2000) Cocoa powder enhances the level of antioxidative activity in rat plasma. Br J Nutr 84:673–680

    PubMed  CAS  Google Scholar 

  • Baba S, Osakabe N, Natsume M, Muto Y, Takizawa T, Terao J (2001) Absorption and urinary excretion of (−)-epicatechin after administration of different levels of cocoa powder or (−)-epicatechin in rats. J Agric Food Chem 49:6050–6056

    Article  PubMed  CAS  Google Scholar 

  • Baba S, Osakabe N, Natsume M, Terao J (2002) Absorption and urinary excretion of procyanidin B2 [epicatechin-(4beta-8)-epicatechin] in rats. Free Radic Biol Med 33:142–148

    Article  PubMed  CAS  Google Scholar 

  • Beecher GR (2003) Overview of dietary flavonoids: nomenclature, occurrence and intake. J Nutr 133:3248S–3254S

    PubMed  CAS  Google Scholar 

  • Buijsse B, Feskens EJM, Kok FJ, Kromhout D (2006) Cocoa intake, blood pressure and cardiovascular mortality. Arch Intern Med 166:411–417

    Article  PubMed  Google Scholar 

  • Chen L, Lee MJ, Li H, Yang CS (1997) Absorption, distribution, elimination of tea polyphenols in rats. Drug Metab Dispos 25:1045–1050

    PubMed  CAS  Google Scholar 

  • Chen Z, Zhu QY, Tsang D, Huang Y (2001) Degradation of green tea catechins in tea drinks. J Agric Food Chem 49:477–482

    Article  PubMed  CAS  Google Scholar 

  • Chow HH, Cai Y, Hakim IA, Crowell JA, Shahi F, Brooks CA, Dorr RT, Hara Y, Alberts DS (2003) Pharmacokinetics and safety of green tea polyphenols after multiple-dose administration of epigallocatechin gallate and polyphenon E in healthy individuals. Clin Cancer Res 9:3312–3319

    PubMed  CAS  Google Scholar 

  • Deprez S, Brezillon C, Rabot S, Philippe C, Mila I, Lapierre C, Scalbert A (2000) Polymeric proanthocyanidins are catabolized by human colonic microflora into low-molecular-weight phenolic acids. J Nutr 130:2733–2738

    PubMed  CAS  Google Scholar 

  • Deprez S, Mila I, Huneau JF, Tome D, Scalbert A (2001) Transport of proanthocyanidin dimer, trimer, and polymer across monolayers of human intestinal epithelial Caco-2 cells. Antioxid Redox Signal 3:957–967

    Article  PubMed  CAS  Google Scholar 

  • Ding EL, Hutfless SM, Ding X, Girotra S (2006) Chocolate and prevention of cardiovascular disease: a systemic review. Nutr Metab (Lond). Jan 3;3:2

    Google Scholar 

  • Duffy SJ, Vita JA (2003) Effects of phenolics on vascular endothelial function. Curr Opin Lipidol 14:21–27

    Article  PubMed  CAS  Google Scholar 

  • Engler MB, Engler MM, Chen CY, Malloy MJ, Browne A, Chiu EY, Kwak HK, Milbury P, Paul SM, Blumberg J, Mietus-Snyder ML (2004) Flavonoid-rich dark chocolate improves endothelial function and increases plasma epicatechin concentrations in healthy adults. J Am Coll Nutr 23:197–204

    PubMed  CAS  Google Scholar 

  • Farouque HM, Leung M, Hope SA, Baldi M, Schechter C, Cameron JD, Meredith IT (2006) Acute and chronic effects of flavanol-rich cocoa on vascular function in subjects with coronary artery disease: a randomized double-blind placebo-controlled study. Clin Sci (Lond) 111:71–80

    CAS  Google Scholar 

  • Fisher ND, Hollenberg NK (2005) Flavanols for cardiovascular health: the science behind the sweetness. J Hypertens 23:1453–1459

    Article  PubMed  CAS  Google Scholar 

  • Fisher ND, Hollenberg NK (2006) Aging and vascular responses to flavanol-rich cocoa. J Hypertens 24:1575–1580

    Article  PubMed  CAS  Google Scholar 

  • Fisher ND, Hughes M, Gerhard-Herman M, Hollenberg NK (2003) Flavanol-rich cocoa induces nitric-oxide-dependent vasodilation in healthy humans. J Hypertens 21:2281–2286

    Article  PubMed  CAS  Google Scholar 

  • Freedman JE, Parker C, Li L, Perlman JA, Frei B, Ivanov V, Deak LR, Iafrati MD, Folts JD (2001) Select flavonoids and whole juice from purple grapes inhibit platelet function and enhance nitric oxide release. Circulation 103:2792–2798

    PubMed  CAS  Google Scholar 

  • Freitas VAP, Glories Y (1999) Concentration and compositional changes of procyanidins in grape seeds and skin of white Vitis vinifera varieties. J Sci Food Agric 79:1601–1606

    Article  Google Scholar 

  • Gonthier MP, Donovan JL, Texier O, Felgines C, Remesy C, Scalbert A (2003) Metabolism of dietary procyanidins in rats. Free Radic Biol Med 35:837–844

    Article  PubMed  CAS  Google Scholar 

  • Grassi D, Necozione S, Lippi C, Croce G, Valeri L, Pasqualetti P, Desideri G, Blumberg JB, Ferri C (2005) Cocoa reduces blood pressure and insulin resistance and improves endothelium-dependent vasodilation in hypertensives. Hypertension 46:398–405

    Article  PubMed  CAS  Google Scholar 

  • Gu L, Kelm MA, Hammerstone JF, Beecher G, Holden J, Haytowitz D, Gebhardt S, Prior RL (2004) Concentrations of proanthocyanidins in common foods and estimations of normal consumption. J Nutr 134:613–617

    PubMed  CAS  Google Scholar 

  • Hashimoto F, Nonaka G, Nishioka I (1989) Tannins and related compounds. XC. 8-C-Ascorbyl (−)-epigallocatechin 3-O-gallate and novel dimeric flavan-3-ols, oolonghomobisflavans A and B, from oolong tea (3). Chem Pharm Bull (Tokyo) 37:3255–3263

    CAS  Google Scholar 

  • Hashimoto F, Ono M, Masuoka C, Ito Y, Sakata Y, Shimizu K, Nonaka G, Nishioka I, Nohara T (2003) Evaluation of the anti-oxidative effect (in vitro) of tea polyphenols. Biosci Biotechnol Biochem 67:396–401

    Article  PubMed  CAS  Google Scholar 

  • Haslam E (1974) Polyphenol-protein interactions. Biochem J 139:285–288

    PubMed  CAS  Google Scholar 

  • Haslam E, Lilley TH (1988) Natural astringency in foodstuffs – a molecular interpretation. Crit Rev Food Sci Nutr 27:1–40

    CAS  Google Scholar 

  • Heiss C, Dejam A, Kleinbongard P, Schewe T, Sies H, Kelm M (2003) Vascular effects of cocoa rich in flavan-3-ols. JAMA 290:1030–1031

    Article  PubMed  Google Scholar 

  • Heiss C, Kleinbongard P, Dejam A, Perre S, Schroeter H, Sies H, Kelm M (2005) Acute consumption of flavanol-rich cocoa and the reversal of endothelial dysfunction in smokers. J Am Coll Cardiol 46:1276–1283

    Article  PubMed  CAS  Google Scholar 

  • Heiss C, Finis D, Kleinbongard P, Hoffman A, Rassaf T, Kelm M, Sies H (2007) Sustained increase in flow-mediated dilation after daily intake of high-flavanol cocoa drink over 1 week. J Cardiovasc Pharmacol 49:74–80

    Article  PubMed  CAS  Google Scholar 

  • Henning SM, Fajardo-Lira C, Lee HW, Youssefian AA, Go VL, Heber D (2003) Catechin content of 18 teas and a green tea extract supplement correlates with the antioxidant capacity. Nutr Cancer 45:226–235

    Article  PubMed  CAS  Google Scholar 

  • Hodgson JM, Puddey IB, Burke V, Watts GF, Beilin LJ (2002) Regular ingestion of black tea improves brachial artery vasodilator function. Clin Sci (Lond) 102:195–201

    Article  Google Scholar 

  • Holt RR, Lazarus SA, Sullards MC, Zhu QY, Schramm DD, Hammerstone JF, Fraga CG, Schmitz HH, Keen CL (2002a) Procyanidin dimer B2 [epicatechin-(4beta-8)-epicatechin] in human plasma after the consumption of a flavanol-rich cocoa. Am J Clin Nutr 76:798–804

    PubMed  CAS  Google Scholar 

  • Holt RR, Schramm DD, Keen CL, Lazarus SA, Schmitz HH (2002b) Chocolate consumption and platelet function. JAMA 287:2212–2213

    Article  PubMed  Google Scholar 

  • Hong J, Lu H, Meng X, Ryu JH, Hara Y, Yang CS (2002) Stability, cellular uptake, biotransformation, and efflux of tea polyphenol (−)-epigallocatechin-3-gallate in HT-29 human colon adenocarcinoma cells. Cancer Res 62:7241–7246

    PubMed  CAS  Google Scholar 

  • Ikeda I, Tsuda K, Suzuki Y, Kobayashi M, Unno T, Tomoyori H, Goto H, Kawata Y, Imaizumi K, Nozawa A, Kakuda T (2005) Tea catechins with a galloyl moiety suppress postprandial hypertriacylglycerolemia by delaying lymphatic transport of dietary fat in rats. J Nutr 135:155–159

    PubMed  CAS  Google Scholar 

  • Jatoi A, Ellison N, Burch PA, Sloan JA, Dakhil SR, Novotny P, Tan W, Fitch TR, Rowland KM, Young CY, Flynn PJ (2003) A phase II trial of green tea in the treatment of patients with androgen independent metastatic prostate carcinoma. Cancer 97:1442–1446

    Article  PubMed  CAS  Google Scholar 

  • Karim M, McCormick K, Kappagoda CT (2000) Effects of cocoa extracts on endothelium-dependent relaxation. J Nutr 130:2105S–2108S

    PubMed  CAS  Google Scholar 

  • Kealey KS, Snyder RM, Romanczyk LJ, Geyer HM, Meyers ME, Withcare EJ, Hammerstone JF, Schmitz HH (1998) Cocoa components, edible products having enhanced polyphenol content, methods of making same and medical uses. Patent Cooperation Treaty (PCT) WO 98/09533. Mars Incorporated, USA

  • Kondo K, Hirano R, Matsumoto A, Igarashi O, Itakura H (1996) Inhibition of LDL oxidation by cocoa. Lancet 348:1514

    Article  PubMed  CAS  Google Scholar 

  • Kuhnle G, Spencer JP, Schroeter H, Shenoy B, Debnam ES, Srai SK, Rice-Evans C, Hahn U (2000) Epicatechin and catechin are O-methylated and glucuronidated in the small intestine. Biochem Biophys Res Commun 277:507–512

    Article  PubMed  CAS  Google Scholar 

  • Kurosawa T, Itoh F, Nozaki A, Nakano Y, Katsuda S, Osakabe N, Tsubone H, Kondo K, Itakura H (2005) Suppressive effect of cocoa powder on atherosclerosis in Kurosawa and Kusanagi-hypercholesterolemic rabbits. J Atheroscler Thromb 12:20–28

    PubMed  CAS  Google Scholar 

  • Lee MJ, Maliakal P, Chen L, Meng X, Bondoc FY, Prabhu S, Lambert G, Mohr S, Yang CS (2002) Pharmacokinetics of tea catechins after ingestion of green tea and (−)-epigallocatechin-3-gallate by humans: formation of different metabolites and individual variability. Cancer Epidemiol Biomarkers Prev 11:1025–1032

    PubMed  CAS  Google Scholar 

  • Lee KW, Kim YJ, Lee HJ, Lee CY (2003) Cocoa has more phenolic phytochemicals and a higher antioxidant capacity than teas and red wine. J Agric Food Chem 51:7292–7295

    Article  PubMed  CAS  Google Scholar 

  • Leikert JF, Rathel TR, Wohlfart P, Cheynier V, Vollmar AM, Dirsch VM (2002) Red wine polyphenols enhance endothelial nitric oxide synthase expression and subsequent nitric oxide release from endothelial cells. Circulation 106:1614–1617

    Article  PubMed  CAS  Google Scholar 

  • Li MH, Jang JH, Sun B, Surh YJ (2004) Protective effects of oligomers of grape seed polyphenols against beta-amyloid-induced oxidative cell death. Ann NY Acad Sci 1030:317–329

    Article  PubMed  CAS  Google Scholar 

  • Lotito SB, Actis-Goretta L, Renart ML, Caligiuri M, Rein D, Schmitz HH, Steinberg FM, Keen CL, Fraga CG (2000) Influence of oligomer chain length on the antioxidant activity of procyanidins. Biochem Biophys Res Commun 276:945–951

    Article  PubMed  CAS  Google Scholar 

  • Mackenzie GG, Carrasquedo F, Delfino JM, Keen CL, Fraga CG, Oteiza PI (2004) Epicatechin, catechin, and dimeric procyanidins inhibit PMA-induced NF-kappaB activation at multiple steps in Jurkat T cells. FASEB J 18:167–169

    PubMed  CAS  Google Scholar 

  • Mao TK, Powell J, van de Water J, Keen CL, Schmitz HH, Hammerstone JF, Gershwin ME (2000) The effect of cocoa procyanidins on the transcription and secretion of interleukin 1 beta in peripheral blood mononuclear cells. Life Sci 66:1377–1386

    Article  PubMed  CAS  Google Scholar 

  • Mao TK, van de Water J, Keen CL, Schmitz HH, Gershwin ME (2002) Modulation of TNF-alpha secretion in peripheral blood mononuclear cells by cocoa flavanols and procyanidins. Dev Immunol 9:135–141

    Article  PubMed  CAS  Google Scholar 

  • Merken HM, Beecher GR (2000) Measurement of food flavonoids by high-performance liquid chromatography: a review. J Agric Food Chem 48:577–599

    Article  PubMed  CAS  Google Scholar 

  • Nonaka G, Kawahara O, Nishioka I (1983) Tannins and related compounds. XV. A new class of dimeric flavan-3-ol gallates, theasinensins A and B, and proanthocyanidin gallates from green tea. Chem Pharm Bull (Tokyo) 31:3906–3914

    CAS  Google Scholar 

  • Nonaka G, Sakai R, Nishioka I (1984) Hydrolysable tannins and proanthocyanidins from green tea. Phytochemistry 23:1753–1755

    Article  CAS  Google Scholar 

  • Orozco TJ, Wang JF, Keen CL (2003) Chronic consumption of a flavanol- and procyanindin-rich diet is associated with reduced levels of 8-hydroxy-2′-deoxyguanosine in rat testes. J Nutr Biochem 14:104–110

    Article  PubMed  CAS  Google Scholar 

  • Osakabe N, Sanbongi C, Yamagishi M, Takizawa T, Osawa T (1998) Effects of polyphenol substances derived from Theobroma cacao on gastric mucosal lesion induced by ethanol. Biosci Biotechnol Biochem 62:1535–1538

    Article  PubMed  CAS  Google Scholar 

  • Ottaviani JI, Carrasquedo F, Keen CL, Lazarus SA, Schmitz HH, Fraga CG (2002) Influence of flavan-3-ols and procyanidins on UVC-mediated formation of 8-oxo-7,8-dihydro-2′-deoxyguanosine in isolated DNA. Arch Biochem Biophys 406:203–208

    Article  PubMed  CAS  Google Scholar 

  • Pearson DA, Schmitz HH, Lazarus SA, Keen CL (2001) Inhibition of in vitro low-density lipoprotein oxidation by oligomeric procyanidins present in chocolate and cocoas. Methods Enzymol 335:350–360

    Article  PubMed  CAS  Google Scholar 

  • Pearson DA, Paglieroni TG, Rein D, Wun T, Schramm DD, Wang JF, Holt RR, Gosselin R, Schmitz HH, Keen CL (2002) The effects of flavanol-rich cocoa and aspirin on ex vivo platelet function. Thromb Res 106:191–197

    Article  PubMed  CAS  Google Scholar 

  • Pearson DA, Holt RR, Rein D, Paglieroni T, Schmitz HH, Keen CL (2005) Flavanols and platelet reactivity. Clin Dev Immunol 12:1–9

    Article  PubMed  CAS  Google Scholar 

  • Pisters KM, Newman RA, Coldman B, Shin DM, Khuri FR, Hong WK, Glisson BS, Lee JS (2001) Phase I trial of oral green tea extract in adult patients with solid tumors. J Clin Oncol 19:1830–1838

    PubMed  CAS  Google Scholar 

  • Prior RL, Gu L (2005) Occurrence and biological significance of proanthocyanidins in the American diet. Phytochemistry 66:2264–2280

    Article  PubMed  CAS  Google Scholar 

  • Rechner AR, Wagner E, Van Buren L, Van De Put F, Wiseman S, Rice-Evans CA (2002) Black tea represents a major source of dietary phenolics among regular tea drinkers. Free Radic Res 36:1127–1135

    Article  PubMed  CAS  Google Scholar 

  • Rein D, Paglieroni TG, Wun T, Pearson DA, Schmitz HH, Gosselin R, Keen CL (2000) Cocoa inhibits platelet activation and function. Am J Clin Nutr 72:30–35

    PubMed  CAS  Google Scholar 

  • Rios LY, Bennett RN, Lazarus SA, Remesy C, Scalbert A, Williamson G (2002) Cocoa procyanidins are stable during gastric transit in humans. Am J Clin Nutr 76:1106–1110

    PubMed  CAS  Google Scholar 

  • Sadik CD, Sies H, Schewe T (2003) Inhibition of 15-lipoxygenases by flavonoids: structure-activity relations and mode of action. Biochem Pharmacol 65:773–781

    Article  PubMed  CAS  Google Scholar 

  • Sanbongi C, Suzuki N, Sakane T (1997) Polyphenols in chocolate, which have antioxidant activity, modulate immune functions in humans in vitro. Cell Immunol 177:129–136

    Article  PubMed  CAS  Google Scholar 

  • Schewe T, Sadik C, Klotz LO, Yoshimoto T, Kuhn H, Sies H (2001) Polyphenols of cocoa: inhibition of mammalian 15-lipoxygenase. Biol Chem 382:1687–1696

    Article  PubMed  CAS  Google Scholar 

  • Schewe T, Kuhn H, Sies H (2002) Flavonoids of cocoa inhibit recombinant human 5-lipoxygenase. J Nutr 132:1825–1829

    PubMed  CAS  Google Scholar 

  • Schramm DD, Karim M, Schrader HR, Holt RR, Cardetti M, Keen CL (2003a) Honey with high levels of antioxidants can provide protection to healthy human subjects. J Agric Food Chem 51:1732–1735

    Article  PubMed  CAS  Google Scholar 

  • Schramm DD, Karim M, Schrader HR, Holt RR, Kirkpatrick NJ, Polagruto JA, Ensunsa JL, Schmitz HH, Keen CL (2003b) Food effects on the absorption and pharmacokinetics of cocoa flavanols. Life Sci 73:857–869

    Article  PubMed  CAS  Google Scholar 

  • Schroeter H, Heiss C, Balzer J, Kleinbongard P, Keen CL, Hollenberg NK, Sies H, Kwik-Uribe CL, Schmitz HH, Kelm M (2006) (−)-Epicatechin mediates beneficial effects of flavanol-rich cocoa on vascular function in humans. Proc Nat Acad Sci (USA) 103:1024–1029

    Article  CAS  Google Scholar 

  • Schubert SY, Neeman I, Resnick N (2002) A novel mechanism for the inhibition of NF-kappaB activation in vascular endothelial cells by natural antioxidants. FASEB J 16:1931–1933

    PubMed  CAS  Google Scholar 

  • Sekher Pannala A, Chan TS, O’Brien PJ, Rice-Evans CA (2001) Flavonoid B-ring chemistry and antioxidant activity: fast reaction kinetics. Biochem Biophys Res Commun 282:1161–1168

    Article  PubMed  CAS  Google Scholar 

  • Shanmuganayagam D, Beahm MR, Osman HE, Krueger CG, Reed JD, Folts JD (2002) Grape seed and grape skin extracts elicit a greater antiplatelet effect when used in combination than when used individually in dogs and humans. J Nutr 132:3592–3598

    PubMed  CAS  Google Scholar 

  • Sies H, Schewe T, Heiss C, Kelm M (2005) Cocoa polyphenols and inflammatory mediators. Am J Clin Nutr 81:304S–312S

    PubMed  CAS  Google Scholar 

  • Spencer JP, Chowrimootoo G, Choudhury R, Debnam ES, Srai SK, Rice-Evans C (1999) The small intestine can both absorb and glucuronidate luminal flavonoids. FEBS Lett 458:224–230

    Article  PubMed  CAS  Google Scholar 

  • Spencer JP, Schroeter H, Shenoy B, Srai SK, Debnam ES, Rice-Evans C (2001) Epicatechin is the primary bioavailable form of the procyanidin dimers B2 and B5 after transfer across the small intestine. Biochem Biophys Res Commun 285:588–593

    Article  PubMed  CAS  Google Scholar 

  • Spencer JP, Abd-el-Mohsen MM, Rice-Evans C (2004) Cellular uptake and metabolism of flavonoids and their metabolites: implications for their bioactivity. Arch Biochem Biophys 423:148–161

    Article  PubMed  CAS  Google Scholar 

  • Steffen Y, Schewe T, Sies H (2006) Myeloperoxidase-mediated LDL oxidation and endothelial cell toxicity of oxidized LDL: attenuation by (−)-epicatechin. Free Radic Res 40:1076–1085

    Article  PubMed  CAS  Google Scholar 

  • Stein JH, Keevil JG, Wiebe DA, Aeschlimann S, Folts JD (1999) Purple grape juice improves endothelial function and reduces the susceptibility of LDL cholesterol to oxidation in patients with coronary artery disease. Circulation 100:1050–1055

    PubMed  CAS  Google Scholar 

  • Suganuma M, Okabe S, Oniyama M, Tada Y, Ito H, Fujiki H (1998) Wide distribution of [3H](−)-epigallocatechin gallate, a cancer preventive tea polyphenol, in mouse tissue. Carcinogenesis 19:1771–1776

    Article  PubMed  CAS  Google Scholar 

  • Taubert D, Berkels R, Roesen R, Klaus W (2003) Chocolate and blood pressure in elderly individuals with isolated systolic hypertension. JAMA 290:1029–1030

    Article  PubMed  Google Scholar 

  • Tanaka T, Inoue K, Betsumiya Y, Mine C, Kouno I (2001) Two types of oxidative dimerization of the black tea polyphenol theaflavin. J Agric Food Chem 49:5785–5789

    Article  PubMed  CAS  Google Scholar 

  • US Department of Agriculture (2003) Database for the flavonoid content of selected foods. US Department of Agriculture, Washington, DC

  • US Department of Agriculture (2004) Database for the proanthocyanidin content of selected foods-2004. US Department of Agriculture, Washington, DC

  • Vaidyanathan JB, Walle T (2002) Glucuronidation and sulfation of the tea flavonoid (−)-epicatechin by the human and rat enzymes. Drug Metab Dispos 30:897–903

    Article  PubMed  CAS  Google Scholar 

  • Vaidyanathan JB, Walle T (2003) Cellular uptake and efflux of the tea flavonoid (−)-epicatechin-3-gallate in the human intestinal cell line Caco-2. J Pharmacol Exp Ther 307:745–752

    Article  PubMed  CAS  Google Scholar 

  • Verstraeten SV, Hammerstone JF, Keen CL, Fraga CG, Oteiza PI (2005) Antioxidant and membrane effects of procyanidin dimers and trimers isolated from peanut and cocoa. J Agric Food Chem 53:5041–5048

    Article  PubMed  CAS  Google Scholar 

  • Vigna GB, Costantini F, Aldini G, Carini M, Catapano A, Schena F, Tangerini A, Zanca R, Bombardelli E, Morazzoni P, Mezzetti A, Fellin R, Maffei, Facino R (2003) Effect of a standardized grape seed extract on low-density lipoprotein susceptibility to oxidation in heavy smokers. Metabolism 52:1250–1257

    Article  PubMed  CAS  Google Scholar 

  • Vita JA (2005) Polyphenols and cardiovascular disease: effects on endothelial and platelet function. Am J Clin Nutr 81:292S–297S

    PubMed  CAS  Google Scholar 

  • Vitseva O, Varghese S, Chakrabarti S, Folts JD, Freedman JE (2005) Grape seed and skin extracts inhibit platelet function and release of reactive oxygen intermediates. J Cardiovasc Pharmacol 46:445–451

    Article  PubMed  CAS  Google Scholar 

  • Vlachopoulos C, Aznaouridis K, Alexopoulos N, Economou E, Andreadou I, Stefanadis C (2005) Effect of dark chocolate on arterial function in healthy individuals. Am J Hypertens 18:785–791

    Article  PubMed  CAS  Google Scholar 

  • Wang JF, Schramm DD, Holt RR, Ensunsa JL, Fraga CG, Schmitz HH, Keen CL (2000) A dose-response effect from chocolate consumption on plasma epicatechin and oxidative damage. J Nutr 130:2115S–2119S

    PubMed  CAS  Google Scholar 

  • Wang-Polagruto JF, Villablanca AC, Polagruto JA, Lee L, Holt RR, Schrader HR, Ensunsa JL, Steinberg FM, Schmitz HH, Keen CL (2006) Chronic consumption of flavanol-rich cocoa improves endothelial function and decreases vascular cell adhesion molecule in hypercholesterolemic postmenopausal women. J Cardiovasc Pharmacol 2006;47 Suppl 2:S177–186; discussion S206–209

    Google Scholar 

  • Ward NC, Hodgson JM, Croft KD, Burke V, Beilin LJ, Puddey IB (2005) The combination of vitamin C and grape-seed polyphenols increases blood pressure: a randomized, double-blind, placebo-controlled trial. J Hypertens 23:427–434

    Article  PubMed  CAS  Google Scholar 

  • West SG (2001) Effect of diet on vascular reactivity: an emerging marker for vascular risk. Curr Atheroscler Rep 3:446–455

    Article  PubMed  CAS  Google Scholar 

  • Wiswedel I, Hirsch D, Kropf S, Gruening M, Pfister E, Schewe T, Sies H (2004) Flavanol-rich cocoa drink lowers plasma F(2)-isoprostane concentrations in humans. Free Radic Biol Med 37:411–421

    Article  PubMed  CAS  Google Scholar 

  • Wollgast J, Anklam E (2000) Review on polyphenols in Theobroma cacao: changes in composition during the manufacture of chocolate and methodology for identification and quantification. Food Res Int 33:423–447

    Article  CAS  Google Scholar 

  • Zhou ZH, Zhang YJ, Xu M, Yang CR (2005) Puerins A and B, two new 8-C substituted flavan-3-ols from Pu-er tea. J Agric Food Chem 53:8614–8617

    Article  PubMed  CAS  Google Scholar 

  • Zhu QY, Hackman RM, Ensunsa JL, Holt RR, Keen CL (2002a) Antioxidative activities of oolong tea. J Agric Food Chem 50:6929–6934

    Article  PubMed  CAS  Google Scholar 

  • Zhu QY, Holt RR, Lazarus SA, Orozco TJ, Keen CL (2002b) Inhibitory effects of cocoa flavanols and procyanidin oligomers on free radical-induced erythrocyte hemolysis. Exp Biol Med (Maywood) 227:321–329

    CAS  Google Scholar 

  • Zhu QY, Schramm DD, Gross HB, Holt RR, Kim SH, Yamaguchi T, Kwik-Uribe CL, Keen CL (2005) Influence of cocoa flavanols and procyanidins on free radical-induced human erythrocyte hemolysis. Clin Dev Immunol 12:27–34

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert M. Hackman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hackman, R.M., Polagruto, J.A., Zhu, Q.Y. et al. Flavanols: digestion, absorption and bioactivity. Phytochem Rev 7, 195–208 (2008). https://doi.org/10.1007/s11101-007-9070-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11101-007-9070-4

Keywords

Navigation