Skip to main content
Log in

Pterocarpans: interesting natural products with antifungal activity and other biological properties

  • Original Paper
  • Published:
Phytochemistry Reviews Aims and scope Submit manuscript

Abstract

Among the phytoalexins with the highest antifungal activity is the isoflavonoid based group of pterocarpans. Here, we present a comprehensive inventory of the structures and sources of pterocarpans, and summarize some of their most interesting biological activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abdel-Kader MS (2001) Phenolic constituents of Ononis vaginalis roots. Planta Med 67:388–390

    PubMed  CAS  Google Scholar 

  • Abdel-Kader MS (2004) Two isoflavonoid glucoside derivatives from Ononis serrata growing in Egypt. Nat Prod Sci 10:321–324

    CAS  Google Scholar 

  • Abreu Matos FJ, Gottlieb OR, Souza Andrade CH (1975) Flavonoids from Dalbergia ecastophyllum. Phytochemistry 14:825–826

    Google Scholar 

  • Adesanya SA, ÓNeill MJ, Roberts MF (1985) Isoflavonoids from Phaseolus coccineus. Phytochemistry 24:2699–2702

    CAS  Google Scholar 

  • Ahmad VU, Iqbal S, Nawaz SA, Choudhary MI, Farooq U, Ali ST, Ahmad A, Bader S, Kousar F, Arshad S, Tareen RB (2006) Isolation of four new pterocarpans from Zygophyllum eurypterum (syn. Z. atriplicoides) with enzyme-inhibition properties. Chem Biodivers 3:996–1003

    PubMed  CAS  Google Scholar 

  • Ajees AA, Sekar K, Parthasarathy S, Balakrishna K (2000) Crystal and molecular structure of desmodin. Cryst Res Technol 35:1117–1123

    CAS  Google Scholar 

  • Akisanya A, Bevan CWL, Hirst J (1959) West African timbers. II. Heartwood constituents of the genus Pterocarpus. J Chem Soc 2679–2681

  • Al-Hazimi HMG, Al-Andis NM (2000a) Minor pterocarpanoids from Melilotus alba. J Saudi Chem Soc 4:215–218

    CAS  Google Scholar 

  • Al-Hazimi HMG, Alkhathlan HZ (2000b) Naturally occurring pterocarpanoids and related compounds. J King Saud Univ Sci 12:93–122

    CAS  Google Scholar 

  • Alagona G, Ghio C, Monti S (2004) B3LYP/6-31G* conformational landscape in vacuo of some pterocarpan stereoisomers with biological activity. Phys Chem Chem Phys 6:2849–2857

    CAS  Google Scholar 

  • Alagona G, Ghio C, Monti S (2005) Structure and dynamics of the hydrogen-bond network around (R,R)-pterocarpans with biological activity in aqueous solution. J Phys Chem B 109:16918–16925

    PubMed  CAS  Google Scholar 

  • Alagona G, Ghio C (2006) Conformational landscape of (R,R)-pterocarpans with biological activity in vacuo and in aqueous solution (PCM and/or water clusters). J Phys Chem A 110:647–659

    PubMed  CAS  Google Scholar 

  • Alencar R, Braz Filho R, Gottlieb OR (1972) Pterocarpanoids from Dalbergia decipularis. Phytochemistry 11:1517

    Google Scholar 

  • Alvarez L, Rios MY, Esquivel C, Chavez MI, Delgado G, Aguilar MI, Villarreal ML, Navarro V (1998) Cytotoxic isoflavans from Eysenhardtia polystachya. J Nat Prod 61:767–770

    PubMed  CAS  Google Scholar 

  • Aragao Craveiro A, Gottlieb OR (1974) Pterocarpans from Platymiscium trinitatis. Phytochemistry 13:1629–1630

    Google Scholar 

  • Aree T, Tip-pyang S, Paramapojn S, Chaichit N (2003) 3,9-Dimethoxy-6a,11a-dihydro-6H-benzo[4,5]furo[3,2-c]chromene-4,10-diol monohydrate. Acta Crystallogr Sect E: Struct Rep Online E59:o381–o383

  • Arisawa M, Kyozuka Y, Hayashi T, Shimizu M, Morita N (1980) Unutilized resources. IX. Isoflavonoids in the roots of Thermopsis fabacea D. C. (Leguminosae). Chem Pharm Bull 28:3686–3688

    CAS  Google Scholar 

  • Armero J, Requejo R, Jorrin J, Lopez-Valbuena R, Tena M (2001) Release of phytoalexins and related isoflavonoids from intact chickpea seedlings elicited with reduced glutathione at root level. Plant Physiol Biochem 39:785–795

    CAS  Google Scholar 

  • Arnone A, Camarda L, Merlini L, Nasini G, Taylor DAH (1977) Coloring matters of the West African red woods Pterocarpus osun and P. soyauxii. Structures of santarubins A and B. J Chem Soc Perkin Trans 1:116–2118

    Google Scholar 

  • Atindehou KK, Queiroz EF, Terreaux C, Traore D, Hostettmann K (2002) Three new prenylated isoflavonoids from the root bark of Erythrina vogelii. Planta Med 68:181–183

    PubMed  CAS  Google Scholar 

  • Awale S, Shrestha SP, Tezuka Y, Ueda Jy, Matsushige K, Kadota S (2005) Neoflavonoids and related constituents from Nepalese Propolis and their nitric oxide production inhibitory activity. J Nat Prod 68:858–864

    PubMed  CAS  Google Scholar 

  • Babu UV, Bhandari SPS, Garg HS (1998) Barbacarpan, a pterocarpan from Crotalaria barbata. Phytochemistry 48:1457–1459

    CAS  Google Scholar 

  • Baggett BR, Cooper JD, Hogan ET, Carper J, Paiva NL, Smith JT (2002) Profiling isoflavonoids found in legume root extracts using capillary electrophoresis. Electrophoresis 23:1642–1651

    PubMed  CAS  Google Scholar 

  • Bai H, Li W, Koike K, Dou DQ, Pei YP, Chen YJ, Nikaido T (2003) A novel biflavonoid from roots of Glycyrrhiza uralensiscultivated in China. Chem Pharm Bull 51:1095–1097

    PubMed  CAS  Google Scholar 

  • Bailey JA, Mansfield JW (1982) Phytoalexins. Blackie, Glasgow

    Google Scholar 

  • Bandara BM, Kumar NS, Samaranayake KM (1989) An antifungal constituent from the stem bark of Butea monosperma. J Ethnopharmacol 25:73–75

    PubMed  CAS  Google Scholar 

  • Bandara BMR, Kumar NS, Wimalasiri KMS (1990) Constituents of the stem bark from Butea monosperma (Leguminosae). J Natl Sci Council Sri Lanka 18:97–103

    CAS  Google Scholar 

  • Banks SW, Dewick PM (1982) (-)-Pisatin, an induced pterocarpan metabolite of abnormal configuration from Pisum sativum. Phytochemistry 21:1605–1608

    CAS  Google Scholar 

  • Barrero AF, Herrador MM, Arteaga P, Rodríguez-García I, García-Moreno M (1997) Resorcinol derivatives and flavonoids of Ononis natrix subspecies ramosissima. J Nat Prod 60:65–68

    CAS  Google Scholar 

  • Barrero AF, Cabrera E, Garcia IR (1998) Pterocarpans from Ononis viscosa subsp. breviflora. Phytochemistry 48:187–190

    CAS  Google Scholar 

  • Baruah P, Barua NC, Sharma RP, Baruah JN, Kulanthaivel P, Herz W (1984) Flavonoids from Millettia pulchra. Phytochemistry 23:443–447

    CAS  Google Scholar 

  • Batyuk VS, Vasil’chenko EA, Vasil’eva LN, Chernobrovaya NV, Komissarenko NF (1987) Flavonoids of Desmodium canadense and their analgesic effect. Khim -Farm Zh 21:63–67

    CAS  Google Scholar 

  • Belofsky G, Carreno R, Lewis K, Ball A, Casadei G, Tegos GP (2006) Metabolites of the “smoke tree", Dalea spinosa, potentiate antibiotic activity against multidrug-resistant Staphylococcus aureus. J Nat Prod 69:261–264

    PubMed  CAS  Google Scholar 

  • Belofsky G, Percivill D, Lewis K, Tegos GP, Ekart J (2004) Phenolic metabolites of Dalea versicolor that enhance antibiotic activity against model pathogenic bacteria. J Nat Prod 67:481–484

    PubMed  CAS  Google Scholar 

  • Bezuidenhoudt BCB, Brandt EV, Ferreira D (1987) Flavonoid analogs from Pterocarpus species. Phytochemistry 26:531–535

    CAS  Google Scholar 

  • Bhrara SC, Jain AC, Seshadri TR (1964) A new examination of the special components of Pterocarpus indicus heartwood. Curr Sci 33:303

    CAS  Google Scholar 

  • Braz Filho R, Magalhaes AF, Magalhaes EG, Gottlieb OR (1970) Chemistry of Brazilian Leguminosae. XXIII. Constitution of leiocarpin and new heptaoxygenated flavones of Apuleia leiocarpa. An Acad Bras Cienc 42:55–59

    CAS  Google Scholar 

  • Braz Filho R, Gottlieb OR, Pinho SLV, Monte FJQ, Da Rocha AI (1973) Chemistry of Brazilian Leguminosae. XXXIX. Flavonoids from Amazonian Leguminosae. Phytochemistry 12:1184–1186

    CAS  Google Scholar 

  • Braz Filho R, De Moraes MPL, Gottlieb OR (1980) The chemistry of Brazilian Leguminosae. Part LVII. Pterocarpans from Swartzia laevicarpa. Phytochemistry 19:2003–2006

    CAS  Google Scholar 

  • Bredenberg JB, Hietala PK (1961) Investigation of the structure of trifolirhizin, an antifungal compound from Trifolium pratense. Acta Chem Scand 15:696–699

    CAS  Google Scholar 

  • Breytenbach JC, Rall GJH (1980) Structure and synthesis of isoflavonoid analogs from Neorautanenia amboensis Schinz. J Chem Soc Perkin Trans 1:1804–1809

    Google Scholar 

  • Brink M, Nel W, Rall GJH, Weitz C, Pachler KGR (1966) Neorautanenia isoflavanoids. II. Neofolin and ficinin, two new furoisoflavanoids from Neorautanenia ficifolia. J S Afr Chem I 19:24–37

    CAS  Google Scholar 

  • Brink Cvd, Engelbrecht JP, Graham DE (1970) Neorautanenia isoflavanoids. IV. Ficifolinol, folitenol, and folinin, three new pterocarpans from the root bark of Neorautanenia ficifolia. J S Afr Chem I 23:24–33

    CAS  Google Scholar 

  • Brink AJ, Rall GJH, Engelbre JP (1974) Structures of some minor pterocarpans of Neorautanenia edulis. Phytochemistry 13:1581–1585

    CAS  Google Scholar 

  • Brink AJ, Rall GJH, Breytenbach JC (1977) Pterocarpans of Neorautanenia edulis and N. amboensis. Phytochemistry 16:273–276

    CAS  Google Scholar 

  • Brown MP, Thomson RH, Hausen BM, Simatupang MH (1974) Naturally occurring quinones. XXIV. Extractives from Bowdichia nitida. The first isoflavone quinone. Liebigs Ann Chem 1295–1300

  • Burden RS, Bailey JA, Dawson GW (1972) Structures of three new isoflavanoids from Phaseolus vulgaris infected with tobacco necrosis virus. Tetrahedron Lett 41:4175–4178

    Google Scholar 

  • Chacha M, Bojase-Moleta G, Majinda RRT (2005) Antimicrobial and radical scavenging flavonoids from the stem wood of Erythrina latissima. Phytochemistry 66:99–104

    PubMed  CAS  Google Scholar 

  • Chan SC, Chang YS, Wang JP, Chen SC, Kuo SC (1998) Three new flavonoids and antiallergic, anti-inflammatory constituents from the heartwood of Dalbergia odorifera. Planta Med 64:153–158

    PubMed  CAS  Google Scholar 

  • Chang LC, Gerhaeuser C, Song L, Farnsworth NR, Pezzuto JM, Kinghorn AD (1997) Activity-guided isolation of constituents of Tephrosia purpurea with the potential to induce the phase II enzyme, quinone reductase. J Nat Prod 60:869–873

    PubMed  CAS  Google Scholar 

  • Chanphen R, Thebtaranonth Y, Wanauppathamkul S, Yuthavong Y (1998) Antimalarial principles from Artemisia indica. J Nat Prod 61:1146–1147

    PubMed  CAS  Google Scholar 

  • Chaudhuri SK, Huang L, Fullas F, Brown DM, Wani MC, Wall ME, Tucker JC, Beecher CWW, Kinghorn AD (1995) Isolation and structure identification of an active DNA strand scission agent, (+)-3,4-dihydroxy-8,9-methylenedioxypterocarpan. J Nat Prod 58:1966–1969

    PubMed  CAS  Google Scholar 

  • Chuang CY, Chen CF, Lin MT, Teh GW, Yeh PH, Han PW (1983) Pharmacological studies on the hypothermic constituents of the root of Sophora subprostrata (Leguminosae). Proc Natl Sci Counc Repub China [B] 7:356–361

    CAS  Google Scholar 

  • Cocker W, Dahl T, Dempsey C, McMurry TBH (1962) Inermin, an extractive of Andira inermis. Chem Ind 216–217

  • Cook JT, Ollis WD, Sutherland IO, Gottlieb OR (1978) Isoflavonoid constituents of Dalbergia and Machaerium species. Part 5. Pterocarpans from Dalbergia spruceana. Phytochemistry 17:1419–1422

    CAS  Google Scholar 

  • Cook R, Tiller SA, Mizen KA, Edwards R (1995) Isoflavonoid metabolism in resistant and susceptible cultivars of white clover infected with the stem nematode Ditylenchus dipsaci. J Plant Physiol 146:348–354

    CAS  Google Scholar 

  • Costa dos Santos C, Lima MAS, Silveira ER (2003) Micromolecular secondary metabolites of Erythroxylum barbatum. Biochem Syst Ecol 31:661–664

    CAS  Google Scholar 

  • Cottiglia F, Casu L, Bonsignore L, Casu M, Floris C, Leonti M, Gertsch J, Heilmann J (2005) New cytotoxic prenylated isoflavonoids from Bituminaria morisiana. Planta Med 71:254–260

    PubMed  CAS  Google Scholar 

  • Cruickshank IAM (1962) Phytoalexins. IV. The antimicrobial spectrum of pisatin. Aust J Biol Sci 15:147–159

    CAS  Google Scholar 

  • Cruickshank IAM, Perrin DR (1963) Phytoalexins of the Leguminosae. Phaseollin from Phaseolus vulgaris. Life Sci 2:680–682

    CAS  Google Scholar 

  • Cruickshank IAM, Biggs DR, Perrin DR, Whittle CP (1974) Phaseollin and phaseollidin relations in infection-droplets on endocarp of Phaseolus vulgaris. Physiol Plant Pathol 4:261–276

    CAS  Google Scholar 

  • Da Silva GL, de Abreu Matos FJ, Silveirat ER (1997) 4′-Dehydroxycabenegrin A-I from roots of Harpalyce brasiliana. Phytochemistry 46:1059–1062

    CAS  Google Scholar 

  • Da Silva AJM, Coelho AL, Simas ABC, Moraes RAM, Pinheiro DA, Fernandes FFA, Arruda EZ, Costa PRR, Melo PA (2004) Synthesis and pharmacological evaluation of prenylated and benzylated pterocarpans against snake venom. Bioorg Med Chem Lett 14:431–435

    PubMed  CAS  Google Scholar 

  • Dagne E, Yenesew A, Waterman PG (1989) Flavonoids and isoflavonoids from Tephrosia fulvinervis and Tephrosia pentaphylla. Phytochemistry 28:3207–3210

    CAS  Google Scholar 

  • Dagne E, Gunatilaka AAL, Kingston DGI, Alemu M, Hofmann G, Johnson RK (1993) Two bioactive pterocarpans from Erythrina burana. J Nat Prod 56:1831–1834

    PubMed  CAS  Google Scholar 

  • Dakora FD, Joseph CM, Phillips DA (1993) Alfalfa (Medicago sativa L.) root exudates contain isoflavonoids in the presence of Rhizobium meliloti. Plant Physiol 101:819–824

    PubMed  CAS  Google Scholar 

  • Daniel M, Purkayastha RP (1995) Handbook of phytoalexin metabolism and action. Marcel Dekker Inc., New York

    Google Scholar 

  • Dannhardt G, Schneider G, Schwell B (1992) Identification and 5-lipoxygenase inhibiting potency of medicarpin isolated from roots of Ononis spinosa L. Pharm Pharmacol Lett 2:161–162

    CAS  Google Scholar 

  • Datta DK, Mukherjee AK, Samaddar KR (1986) Biotic and abiotic induction of a fungitoxic compound in rice bean (Vigna umbellata [Thunb.] Ohwi and Ohashi). J Phytopathol 117:244–251

    CAS  Google Scholar 

  • DeMartinis C, Mackay MF, Poppleton BJ (1978) The crystal and molecular structure of (-)-phaseollin. Tetrahedron 34:1849–1852

    CAS  Google Scholar 

  • Demuner AJ, Barbosa LCdA, Chagas do Nacimento J, Vieira JJ, Santos MAd (2003) Isolation and evaluation of nematocidal activity of chemical constituents of Mucuna cinerea against Meloidogyne incognita and Heterodera glycines. Quim Nova 26:335–339

    CAS  Google Scholar 

  • Deng Y, Jiang Y, Xi C, Wu S, Wang H (2004) Crystal structure of (6aR,11aR)-4,9-dimethoxy-3-hydroxypterocarpan. Huaxue Wuli Xuebao 17:454–458

    CAS  Google Scholar 

  • Deshpande VH, Shastri RK (1977) Phenolics of Albizzia lebbek, A. amara and A. procera. Indian J Chem Sect B 15B:201–204

    Google Scholar 

  • Dewick PM, Ward D (1978) Isoflavone precursors of pterocarpan phytoalexin maackiain in Trifolium pratense. Phytochemistry 17:1751–1754

    CAS  Google Scholar 

  • Dietrichs HH, Simatupang MH (1974) Homopterocarpin in heartwood from Pericopsis angolensis. Holzforschung 28:186

    CAS  Google Scholar 

  • Dominguez XA, Franco F, Viveros Y (1978) Mexican medicinal plants. XXXIV. Rotenoids and a fluorescent compound from Eysenhardtia polystachya. Rev Latinoam Quim 9:209–211

    CAS  Google Scholar 

  • Donnelly DMX, Fitzgerald MA (1971) Pterocarpanoid constituents of Swartzia leiocalycina. Phytochemistry 10:3147–3153

    CAS  Google Scholar 

  • Donnelly DMX, Kavanagh PJ (1974) Dalbergia species. XI. Isoflavanoids of Dalbergia oliveri. Phytochemistry 13:2587–2591

    CAS  Google Scholar 

  • Dornbos DL Jr., Spencer GF, Miller RW (1990) Medicarpin delays alfalfa seed germination and seedling growth. Crop Sci 30:162–166

    Article  CAS  Google Scholar 

  • Dorr KK, Guest DI (1987) Rapid, sensitive high-performance liquid chromatographic assay for isoflavonoids from cowpea (Vigna unguiculata). J Chromatogr 387:536–540

    PubMed  CAS  Google Scholar 

  • Duddeck H, Yenesew A, Dagne E (1987) Isoflavonoids from Taverniera abyssinica. B Chem Soc Ethiopia 1:36–41

    CAS  Google Scholar 

  • Durango D, Quinones W, Torres F, Rosero Y, Gil J, Echeverri F (2002) Phytoalexin accumulation in Colombian bean varieties and aminosugars as elicitors. Molecules 7:817–832

    CAS  Google Scholar 

  • Edwards C, Strange RN (1991) Separation and identification of phytoalexins from leaves of groundnut (Arachis hypogaea) and development of a method for their determination by reversed-phase high-performance liquid chromatography. J Chromatogr 547:185–193

    CAS  Google Scholar 

  • Engler TA, Lynch KO, Reddy JP, Gregory GS (1993) Synthetic pterocarpans with anti-HIV activity. Bioorg Med Chem Lett 3:1229–1232

    CAS  Google Scholar 

  • Engler TA, LaTessa KO, Iyengar R, Chai WY, Agrios K (1996) Stereoselective syntheses of substituted pterocarpans with anti-HIV activity, and 5-aza-/5-thia-pterocarpan and 2-aryl-2,3-dihydrobenzofuran analogues. Bioorg Med Chem 4:1755–1769

    PubMed  CAS  Google Scholar 

  • Erasto P, Bojase-Moleta G, Majinda RRT (2004) Antimicrobial and antioxidant flavonoids from the root wood of Bolusanthus speciosus. Phytochemistry 65:875–880

    PubMed  CAS  Google Scholar 

  • Fedoreyev SA, Pokushalova TV, Veselova MV, Glebko LI, Kulesh NI, Muzarok TI, Seletskaya LD, Bulgakov VP, Zhuravlev YN (2000) Isoflavonoid production by callus cultures of Maackia amurensis. Fitoterapia 71:365–372

    PubMed  CAS  Google Scholar 

  • Ferrari F, Botta B, ves de Lima R (1983) Flavonoids and isoflavonoids from Zollernia paraensis. Phytochemistry 22:1663–1664

    CAS  Google Scholar 

  • Fraishtat PD, Popravko SA, Wulfson NS (1979) New pterocarpan from the Trifolium pratense red clover roots. Bioorg Khim 5:1879–1880

    CAS  Google Scholar 

  • Fraishtat PD, Popravko SA, Wulfson NS (1981) Clover secondary metabolites 8. Isolation and identification of pterocarpans from the roots of cultured species of clover. Bioorg Khim 7:927–936

    CAS  Google Scholar 

  • Friedrichsen W, Schoening A (1990) The stereochemistry of cis-pterocarpans. A theoretical study. Z Naturforsch B: Chem Sci 45:1049–1054

    CAS  Google Scholar 

  • Fujise Y, Toda T, Ito S (1965) Isolation of trifolirhizin from Ononis spinosa. Chem Pharm Bull 13:93–95

    PubMed  CAS  Google Scholar 

  • Fukai T, Nishizawa J, Yokoyama M, Nomura T (1993) Phenolic constituents of Glycyrrhiza species 13. 5 New isoprenoid-substituted flavonoids, kanzonols F-J, from Glycyrrhiza uralensis. Heterocycles 36:2565–2576

    CAS  Google Scholar 

  • Fukai T, Nishizawa J, Yokoyama M, Tantai L, Nomura T (1994) Phenolic constituents of Glycyrrhiza species. 16. Five new isoprenoid-substituted flavonoids, kanzonols M - P and R, from two Glycyrrhiza species. Heterocycles 38:1089–1098

    CAS  Google Scholar 

  • Fukai T, Sheng CB, Horikoshi T, Nomura T (1996) Isoprenylated flavonoids from underground parts of Glycyrrhiza glabra. Phytochemistry 43:1119–1124

    CAS  Google Scholar 

  • Fukai T, Cai BS, Maruno K, Miyakawa Y, Konishi M, Nomura T (1998) Phenolic constituents of Glycyrrhiza species. An isoprenylated flavanone from Glycyrrhiza glabra and rec-assay of licorice phenols. Phytochemistry 49:2005–2013

    CAS  Google Scholar 

  • Furuya T, Ikuta A (1968) Presence of L-maackiain and pterocarpin in callus tissue of Sophora angustifolia. Chem Pharm Bull 16:771

    PubMed  CAS  Google Scholar 

  • Gao D, Zhang R (1994) Chemical constituents of Malay licorice (Glycyrrhiza yunnanensis). Zhongcaoyao 25:507–508, 513

    CAS  Google Scholar 

  • Gnanamanickam SS, Smith DA (1980) Selective toxicity of isoflavonoid phytoalexins to Gram-positive bacteria. Phytopathology 70:894–896

    Article  CAS  Google Scholar 

  • Goda Y, Katayama M, Ichikawa K, Shibuya M, Kiuchi F, Sankawa U (1985) Inhibitors of prostaglandin biosynthesis from Dalbergia odorifera. Chem Pharm Bull 33:5606–5609

    PubMed  CAS  Google Scholar 

  • Goda Y, Kiuchi F, Shibuya M, Sankawa U (1992) Inhibitors of prostaglandin biosynthesis from Dalbergia odorifera. Chem Pharm Bull 40:2452–2457

    PubMed  CAS  Google Scholar 

  • Gustine DL, Sherwood RT, Vance CP (1978) Regulation of phytoalexin synthesis in jackbean callus cultures. Stimulation of phenylalanine ammonia-lyase and O-methyltransferase. Plant Physiol 61:226–230

    PubMed  CAS  Google Scholar 

  • Gustine DL, Moyer BG (1982) Retention of phytoalexin regulation in legume callus cultures. Plant Cell Tissue Organ Cult 1:255–263

    CAS  Google Scholar 

  • Hai Lq, Liang H, Zhao Yy, Du Ns (2002) Studies on chemical constituents in root of Hedysarum polybotrys. Zhongguo Zhongyao Zazhi 27:843–845

    PubMed  CAS  Google Scholar 

  • Harborne JB (1978) Annual Proceedings of the Phytochemical Society of Europe, No. 15: Biochemical Aspects of Plant and Animal Coevolution. Academic Press, London

    Google Scholar 

  • Hargreaves JA, Mansfield JW, Coxon DT (1976) Identification of medicarpin as a phytoalexin in the broad bean plant (Vicia faba L). Nature 262:318–319

    CAS  Google Scholar 

  • Harper SH, Kemp AD, Underwood WGE (1965) Heartwood constituents of Swartzia madagascariensis. Chem Commun 309–310

  • Harper SH, Kemp AD, Underwood WGE, Campbell RVM (1969) Pterocarpanoid constituents of the heartwoods of Pericopsis angolensis and Swartzia madagascariensis. J ChemSoc C 1109–1116

    Google Scholar 

  • Hayashi Y, Shirato T, Sakurai K, Takahashi T (1978) Isoflavonoids from the heartwood of Millettia pendula benth. Mokuzai Gakkaishi 24:898–901

    CAS  Google Scholar 

  • Haznagy A, Toth G, Tamas J (1978) Constituents of the aqueous extracts from Ononis spinosa L. Arch Pharm 311:318–323

    CAS  Google Scholar 

  • Herath HMTB, Dassanayake RS, Priyadarshani AMA, De Silva S, Wannigama GP, Jamie J (1998) Isoflavonoids and a pterocarpan from Gliricidia sepium. Phytochemistry 47:117–119

    CAS  Google Scholar 

  • Hwang MH, Kwon YS, Kim CM (1997) Isoflavone compounds of the heartwood of Maackia fauriei. Yakhak Hoechi 41:444–449

    CAS  Google Scholar 

  • Iinuma M, Ohyama M, Tanaka T, Mizuno M, Hong SK (1991) An isoflavanone from roots of Echinosophora koreensis. Phytochemistry 30:3153–3154

    CAS  Google Scholar 

  • Iinuma M, Tanaka T, Mizuno M, Lang FA (1992a) Two flavanones from roots of Sophora leachiana. Phytochemistry 31:721–723

    CAS  Google Scholar 

  • Iinuma M, Tanaka T, Mizuno M, Yamamoto H, Kobayashi Y, Yonemori S (1992b) Phenolic constituents in Erythrina bidwilli and their activity against oral microbial organisms. Chem Pharm Bull 40:2749–2752

    CAS  Google Scholar 

  • Iinuma M, Ohyama M, Tanaka T, Hegarty MP, Hegarty EE (1993a) Isoflavoniods in roots of Sophora fraseri. Phytochemistry 34:1654–1655

    CAS  Google Scholar 

  • Iinuma M, Ohyama M, Tanaka T, Mizuno M, Hong SK (1993b) Five flavonoid compounds from Echinosophora koreensis. Phytochemistry 33:1241–1245

    CAS  Google Scholar 

  • Iinuma M, Yokoyama J, Ohyama M, Tanaka T, Mizuno M, Ruangrungsi N (1993c) Seven phenolic compounds in the roots of Sophora exigua. Phytochemistry 33:203–208

    CAS  Google Scholar 

  • Iinuma M, Ohyama M, Kawasaka Y, Tanaka T (1995a) Flavonoid compounds in roots of Sophora tetraptera. Phytochemistry 39:667–672

    CAS  Google Scholar 

  • Iinuma M, Ohyama M, Tanaka T (1995b) Flavonoids in roots of Sophora prostrata. Phytochemistry 38:539–543

    CAS  Google Scholar 

  • Iinuma M, Ohyama M, Tanaka T, Shirataki Y, Burandt C (1995c) Isoflavonoids in roots of Sophora secundiflora. Phytochemistry 39:907–910

    CAS  Google Scholar 

  • Ingham JL (1976) Fungal modification of pterocarpan phytoalexins from Melilotus alba and Trifolium pratense. Phytochemistry 15:1489–1495

    CAS  Google Scholar 

  • Ingham JL (1977a) Phytoalexins of hyacinth bean (Lablab niger). Z Naturforsch C: J Biosci 32C:1018–1020

    Google Scholar 

  • Ingham JL, Dewick PM (1977b) Isoflavonoid phytoalexins from leaves of Trifolium arvense. Z Naturforsch C: J Biosci 32C:446–448

    Google Scholar 

  • Ingham JL, Keen NT, Hymowitz T (1977c) A new isoflavone phytoalexin from fungus-inoculated stems of Glycine wightii. Phytochemistry 16:1943–1946

    CAS  Google Scholar 

  • Ingham JL (1978a) Isoflavonoid and stilbene phytoalexins of the genus Trifolium. Biochem Syst Ecol 6:217–223

    CAS  Google Scholar 

  • Ingham JL (1978b) Phaseollidin, a phytoalexin of Psophocarpus tetragonolobus. Phytochemistry 17:165

    CAS  Google Scholar 

  • Ingham JL (1978c) Flavonoid and isoflavonoid compounds from leaves of sainfoin (Onobrychis viciifolia). Z Naturforsch C: J Biosci 33C:146–148

    Google Scholar 

  • Ingham JL (1979a) Isoflavonoid phytoalexins of yam bean (Pachyrrhizus erosus). Z Naturforsch C: J Biosci 34C:683–688

    Google Scholar 

  • Ingham JL (1979b) Isoflavonoid phytoalexins from leaflets of Dalbergia sericea. Z Naturforsch C: J Biosci 34C:630–631

    Google Scholar 

  • Ingham JL (1979c) Phytoalexin production by flowers of garden pea (Pisum sativum). Z Naturforsch C: J Biosci 34C:296–298

    Google Scholar 

  • Ingham JL (1979d) Isoflavonoid phytoalexins of Parochetus communis and Factorovskya aschersoniana. Z Naturforsch C: J Biosci 34C:290–292

    Google Scholar 

  • Ingham JL (1979e) Phytoalexin production by species of the genus Caragana. Z Naturforsch C: J Biosci 34C:293–295

    Google Scholar 

  • Ingham JL, Dewick PM (1979f) A new isoflavan phytoalexin from leaflets of Lotus hispidus. Phytochemistry 18:1711–1714

    CAS  Google Scholar 

  • Ingham JL (1980a) Induced isoflavonoids of Erythrina sandwicensis. Z Naturforsch C: J Biosci 35C:384–386

    Google Scholar 

  • Ingham JL, Dewick PM (1980b) Sparticarpin: a pterocarpan phytoalexin from Spartium junceum. Z Naturforsch C: J Biosci 35C:197–200

    Google Scholar 

  • Ingham JL, Markham KR (1980c) Identification of the Erythrinaphytoalexin, cristacarpin, and a note on the chirality of other 6a-hydroxypterocarpans. Phytochemistry 19:1203–1207

    CAS  Google Scholar 

  • Ingham JL (1981a) Phytoalexin induction and its chemosystematic significance in the genus Trigonella. Biochem Syst Ecol 9:275–281

    CAS  Google Scholar 

  • Ingham JL, Keen NT, Markham KR, Mulheirn LJ (1981b) Dolichins A and B, two pterocarpans from bacteria-treated leaves of Dolichos biflorus. Phytochemistry 20:807–809

    CAS  Google Scholar 

  • Ingham JL (1982a) A new isoflavanone phytoalexin from Medicago rugosa. Planta Med 45:46–47

    CAS  Google Scholar 

  • Ingham JL, Markham KR (1982b) Tephrocarpin, a pterocarpan phytoalexin from Tephrosia bidwilli and a structure proposal for acanthocarpan. Phytochemistry 21:2969–2972

    CAS  Google Scholar 

  • Ingham JL, Mulheirn LJ (1982c) Isoflavonoid phytoalexins from fungus-inoculated leaves of Apios tuberosa. Phytochemistry 21:1409–1413

    CAS  Google Scholar 

  • Ingham JL, Dewick PM (1984a) The structure of desmocarpin, a pterocarpan phytoalexin from Desmodium gangeticum. Z Naturforsch C: J Biosci 39C:531–534

    Google Scholar 

  • Ingham JL, Markham KR (1984b) New dextrorotatory pterocarpan phytoalexins from leaflets of Nissolia fruticosa. Z Naturforsch C: J Biosci 39C:13–17

    Google Scholar 

  • Ingham JL, Tahara S (1985) Isoneorautenol and other pterocarpan phytoalexins from Calopogonium mucunoides. Z Naturforsch C: J Biosci 40C: 482–489

    Google Scholar 

  • Ingham JL (1990a) A further investigation of phytoalexin formation in the genus Trifolium. Z Naturforsch C: J Biosci 45:829–834

    CAS  Google Scholar 

  • Ingham JL (1990b) Systematic aspects of phytoalexin formation within tribe Phaseoleae of the Leguminosae (subfamily Papilionoideae). Biochem Syst Ecol 18:329–343

    CAS  Google Scholar 

  • Ingham JL (1991) Isoflavonoid phytoalexins from the fungus-inoculated leaflets of Erythrina species. Biochem Syst Ecol 19:497–506

    CAS  Google Scholar 

  • Jain AK (1988) A new pterocarpan glycoside from Trifolium pratense. J Indian Chem Soc 65:69

    CAS  Google Scholar 

  • Jia Z, Liu Z, Jiang D, Song G (1993) Alkaloid and isoflavonoid constituents of Thermopsis licentiana. Chem Res Chin Univ 9:35–39

    CAS  Google Scholar 

  • Jiménez-González L, Alvarez-Corral M, Muñoz-Dorado M, Rodríguez-García I (2005) A concise and diastereoselective total synthesis of cis and trans-pterocarpans. Chem Commun 21:2689–2691

    Google Scholar 

  • Joseph CC, Ndoile MM, Malima RC, Nkunya MHH (2004) Larvicidal and mosquitocidal extracts, a coumarin, isoflavonoids and pterocarpans from Neorautanenia mitis. Trans R Soc Trop Med Hyg 98:451–455

    PubMed  CAS  Google Scholar 

  • Juck DBF, De Rezende LC, David JP, De Queiroz LP, David JM (2006) Two new isoflavonoids from Bowdichia virgilioides. Nat Prod Res 20:27–30

    PubMed  CAS  Google Scholar 

  • Jung HJ, Kang SS, Hyun SK, Choi JS (2005) In vitro free radical and ONOO- scavengers from Sophora flavescens. Arch Pharmacal Res 28:534–540

    CAS  Google Scholar 

  • Kajiyama K, Hiraga Y, Takahashi K, Hirata S, Kobayashi S, Sankawa U, Kinoshita T (1993) Flavonoids and isoflavonoids of chemotaxonomic significance from Glycyrrhiza pallidiflora (Leguminosae). Biochem Syst Ecol 21:785–793

    CAS  Google Scholar 

  • Kamat VS, Chuo FY, Kubo I, Nakanishi K (1981) Antimicrobial agents from an East African medicinal plant Erythrina abyssinica. Heterocycles 15:1163–1170

    CAS  Google Scholar 

  • Kan Y, Wang R (1994) Constituents of Glycyrrhiza pallidiflora. Fitoterapia 65:91

    CAS  Google Scholar 

  • Kang TH, Jeong SJ, Ko WG, Kim NY, Lee BH, Inagaki M, Miyamoto T, Higuchi R, Kim YC (2000) Cytotoxic lavandulyl flavanones from Sophora flavescens. J Nat Prod 63:680–681

    PubMed  CAS  Google Scholar 

  • Keen NT, Kennedy BW (1974) Hydroxyphaseollin and related isoflavanoids in the hypersensitive resistant response of soybeans against Pseudomonas glycinea. Physiol Plant Pathol 4:173–186

    CAS  Google Scholar 

  • Keen NT, Ingham JL (1980) Phytoalexins from Dolichos biflorus. Z Naturforsch C: J Biosci 35C:923–926

    Google Scholar 

  • Kessmann H, Edwards R, Geno PW, Dixon RA (1990) Stress responses in alfalfa (Medicago sativa L.). V. Constitutive and elicitor-induced accumulation of isoflavonoid conjugates in cell suspension cultures. Plant Physiol 94:227–232

    PubMed  CAS  Google Scholar 

  • Khaomek P, Ruangrungsi N, Saifah E, Sriubolmas N, Ichino C, Kiyohara H, Yamada H (2004) A new pterocarpan from Erythrina fusca. Heterocycles 63:879–884

    Article  CAS  Google Scholar 

  • Khera U,Chibber SS (1978) Chemical constituents of Dalbergia volubilis: isolation of cearoin and (+)-medicarpin. Indian J Chem Sect B 16B:78–79

    Google Scholar 

  • Khushbaktova ZA, Syrov VN (1989) Hypolipidemic activity of flavonoids from Pseudosophora alopecuroides and Rhaponticum carthamoides. Dokl Akad Nauk UzSSR 45–47

  • Kim JM, Lee YM, Lee GY, Jang DS, Bae KH, Kim JS (2006) Constituents of the roots of Pueraria lobata inhibit formation of advanced glycation end products (AGEs). Arch Pharmacal Res 29:821–825

    CAS  Google Scholar 

  • Kim JS, Byun JH, Kang SS, Son KH, Kim HP, Chang HW (2002) Isolation of flavonoids and a saponin from Echinosophora koreensis. Saengyak Hakhoechi 33:110–115

    CAS  Google Scholar 

  • Kinoshita T, Ichinose K, Takahashi C, Sankawa U (1986) The isolation of a new class of isoflavonoid metabolites from Sophora tomentosa L. Chem Pharm Bull 34:3067–3070

    CAS  Google Scholar 

  • Kinoshita T, Ichinose K, Takahashi C, Ho FC, Wu JB, Sankawa U (1990) Chemical studies on Sophora tomentosa: the isolation of a new class of isoflavonoid. Chem Pharm Bull 38:2756–2759

    CAS  Google Scholar 

  • Kitagawa I, Chen WZ, Hori K, Harada E, Yasuda N, Yoshikawa M, Ren J (1994) Chemical Studies of Chinese Licorice-Roots. I. Elucidation of five new flavonoid constituents from the roots of Glycyrrhiza glabra L. collected in Xinjiang. Chem Pharm Bull 42:1056–1062

    PubMed  CAS  Google Scholar 

  • Kitagawa I, Chen WZ, Hori K, KobayashiO M, Ren J (1998) Chemical studies of chinese licorice-roots. II. Five new flavonoid constituents from the roots of Glycyrrhiza aspera PALL. Collected in Xinjiang. Chem Pharm Bull 46:1511–1517

    CAS  Google Scholar 

  • Kiuchi F, Chen X, Tsuda Y (1990) Four new phenolic constituents from licorice (root of Glycyrrhiza sp). Heterocycles 31:629–636

    CAS  Google Scholar 

  • Komatsu M, Yokoe I, Shirataki Y (1976) Studies on the constituents of Sophora species. X. Constituents of the root of Sophora japonica L. Yakugaku Zasshi 96:254–257

    PubMed  CAS  Google Scholar 

  • Komatsu M, Yokoe I, Shirataki Y (1981) Studies on the constituents of Sophora species. XIV. Constituents of the root of Sophora franchetiana Dunn (1). Chem Pharm Bull 29:532–538

    CAS  Google Scholar 

  • Konoshima T, Takasaki M, Kozuka M, Tokuda H, Nishino H, Matsuda E, Nagai M (1997) Antitumor promoting activities of isoflavonoids from Wistaria brachybotrys. Biol Pharm Bull 20:865–868

    PubMed  CAS  Google Scholar 

  • Kovalev VN (1983) Chemical study of isoflavonoids contained in restharrow tincture. Nauchnye Trudy – Vsesoyuznyi Nauchno-Issledovatel’skii Institut Farmatsii 20:96–103

  • Koysomboon S, Van Altena I, Kato S, Chantrapromma K (2006) Antimycobacterial flavonoids from Derris indica. Phytochemistry 67:1034–1040

    PubMed  CAS  Google Scholar 

  • Kurosawa K, Ollis WD, Redman BT, Sutherland IO, Gottlieb OR (1978a) Isoflavonoid constituents of Dalbergia and Machaerium species. Part 3. Vestitol and vesticarpan, isoflavonoids from Machaerium vestitum. Phytochemistry 17:1413–1415

    CAS  Google Scholar 

  • Kurosawa K, Ollis WD, Sutherland IO, Gottlieb OR, De Oliveira AB (1978b) Isoflavonoid constituents of Dalbergia and Machaerium species. Part 2. Mucronulatol, mucroquinone and mucronucarpan, isoflavonoids from Machaerium mucronulatum and M. villosum. Phytochemistry 17:1405–1411

    CAS  Google Scholar 

  • Kwon YS, Kim CM (1998) Flavonoids of the stem bark of Maackia fauriei. Saengyak Hakhoechi 29:56–59

    CAS  Google Scholar 

  • Kwon YS, Jeon SH, Kim CM (2000) Isoflavonoids from the root cortex of Robinia pseudo-acacia. Nat Prod Sci 6:139–141

    CAS  Google Scholar 

  • Latunde-Dada AO, Lucas JA (2001) The plant defence activator acibenzolar-S-methyl primes cowpea [Vigna unguiculata (L.) Walp.] seedlings for rapid induction of resistance. Physiol Mol Plant Pathol 58:199–208

    CAS  Google Scholar 

  • Lebreton P, Markham KR, Swift WT III, Oung B, Mabry TJ (1967) Flavonoids of Baptisia australis. Phytochemistry 6:1675–1680

    CAS  Google Scholar 

  • Lenssen AW, Townsend CE, Martin SS (1995) Clonal-by-environment interactions influence isoflavonoid accumulation in Cicer milkvetch. Crop Sci 35:756–763

    Article  CAS  Google Scholar 

  • Letcher RM, Shirley IM (1976) Phenolic compounds from the heartwood of Dalbergia nitidula. Phytochemistry 15:353–354

    CAS  Google Scholar 

  • Li W, Asada Y, Koike K, Hirotani M, Rui H, Yoshikawa T, Nikaido T (2001) Flavonoids from Glycyrrhiza pallidiflora hairy root cultures. Phytochemistry 58:595–598

    PubMed  CAS  Google Scholar 

  • Li W, Koike K, Asada Y, Hirotani M, Rui H, Yoshikawa T, Nikaido T (2002) Flavonoids from Glycyrrhiza pallidiflora hairy root cultures. Phytochemistry 60:351–355

    PubMed  CAS  Google Scholar 

  • Li G, Wang J, Li X, Li N (2003) Isolation and identification of pterocarpans and isoflavones from the pericarp of Sphaerophysa salsula DC. Zhongguo Yaowu Huaxue Zazhi 13:215–218

    CAS  Google Scholar 

  • Lin YL, Kuo YH (1993) 6a,12a-Dehydro-β-toxicarol and derricarpin, two new isoflavonoids, from the roots of Derris oblonga Benth. Chem Pharm Bull 41:1456–1458

    CAS  Google Scholar 

  • Lin LZ, He XG, Lindenmaier M, Nolan G, Yang J, Cleary M, Qiu SX, Cordell GA (2000) Liquid chromatography-electrospray ionization mass spectrometry study of the flavonoids of the roots of Astragalus mongholicus and A. membranaceus. J Chromatogr A 876:87–95

    PubMed  CAS  Google Scholar 

  • Liu Y, Ma Xx, Chen HB, Tu Gz, He Jm, Zhao Yy (2005) Chemical constituents of Hedysarum gmelinii. J Chinese Pharmaceut Sci 14:75–78

    Google Scholar 

  • Lo WL, Chang FR, Liaw CC, Wu YC (2002) Cytotoxic coumaronochromones from the roots of Euchresta formosana. Planta Med 68:146–151

    PubMed  CAS  Google Scholar 

  • Lo WL, Wu CC, Chang FR, Wang WY, Khalil AT, Lee KH, Wu YC (2003) Antiplatelet and anti-HIV constituents from Euchresta formosana. Nat Prod Res 17:91–97

    PubMed  CAS  Google Scholar 

  • Lwande W, Greene CS, Bentley MD (1985) Flavonoids from the roots of Tephrosia elata. J Nat Prod 48:1004–1005

    CAS  Google Scholar 

  • Ma K, Ishikawa T, Seki H, Furihata K, Ueki H, Narimatsu S, Higuchi Y, Chaichantipyuth C (2005) Isolation of new isoflavonolignans, butesuperins A and B, from a Thai miracle herb, Butea superba. Heterocycles 65:893–900

    CAS  Google Scholar 

  • Machocho AK, Lwande W, Jondiko JI, Moreka LVC, Hassanali A (1995) Three new flavonoids from the root of Tephrosia emoroides and their antifeedant activity against the larvae of the spotted stalk borer Chilo partellus Swinhoe. Int J Pharm 33:222–227

    CAS  Google Scholar 

  • Macias FA, Simonet AM, Galindo JC (1995) Natural products that influence plant growth and development from plants. The case of Melilotus messanensis. Proc Plant Growth Regul Soc Am 22:53–57

    Google Scholar 

  • Macias FA, Simonet AM, Galindo JCG, Castellano D (1998) Natural products as allelochemicals. Bioactive phenolics and polar compounds from Melilotus messanensis. Phytochemistry 50:35–46

    Google Scholar 

  • Maekawa E, Kitao K (1970) Isolation of pterocarpanoid compounds as heartwood constituents of Maackia amurensis var Buergeri. Mokuzai Kenkyu 50:29–35

    CAS  Google Scholar 

  • Magalhaes AF, Tozzi AMA, Magalhaes EG, Nogueira MA, Queiroz SCN (2000) Flavonoids from Lonchocarpus latifolius roots. Phytochemistry 55:787–792

    PubMed  CAS  Google Scholar 

  • Mahabusarakam W, Deachathai S, Phongpaichit S, Jansakul C, Taylor WC (2004) A benzil and isoflavone derivatives from Derris scandens Benth. Phytochemistry 65:1185–1191

    PubMed  CAS  Google Scholar 

  • Manjary F, Petitjean A, Conan JY, Martin MT, Frappier F, Rasoanaivo P, Ratsimamanga-Urverg S (1993) A prenylated pterocarpan from Mundulea striata. Phytochemistry 33:515–517

    CAS  Google Scholar 

  • Matsuda H, Morikawa T, Xu FM, Ninomiya K, Yoshikawa M (2004) New isoflavones and pterocarpane with hepatoprotective activity from the stems of Erycibe expansa. Planta Med 70:1201–1209

    PubMed  CAS  Google Scholar 

  • Matsuura N, Nakai R, Iinuma M, Tanaka T, Inoue K (1994) A prenylated flavanone from roots of Maackia amurensis subsp. buergeri. Phytochemistry 36:255–256

    CAS  Google Scholar 

  • Maurich T, Iorio M, Chimenti D, Turchi G (2006) Erybraedin C and bitucarpin A, two structurally related pterocarpans purified from Bituminaria bituminosa, induced apoptosis in human colon adenocarcinoma cell lines MMR- and p53-proficient and -deficient in a dose-, time-, and structure-dependent fashion. Chem Biol Interact 159:104–116

    PubMed  CAS  Google Scholar 

  • Maximo P, Lourenco A (1998) A pterocarpan from Ulex parviflorus. Phytochemistry 48:359–362

    CAS  Google Scholar 

  • Maximo P, Lourenco A, Feio SS, Roseiro JC (2000) Flavonoids from Ulex species. Z Naturforsch C: J Biosci 55:506–510

    CAS  Google Scholar 

  • Maximo P, Lourenco A, Feio SS, Roseiro JC (2002a) Flavonoids from Ulex airensis and Ulex europaeus ssp europaeus. J Nat Prod 65:175–178

    CAS  Google Scholar 

  • Maximo P, Lourenco A, Feio SS, Roseiro JC (2002b) A new prenylisoflavone from Ulex jussiaei. Z Naturforsch C: J Biosci 57:609–613

    CAS  Google Scholar 

  • McMurry TBH, Martin E, Donnelly DMX, Thompson JC (1972) 3-Hydroxy-9-methoxy- and 3-methoxy-9-hydroxypterocarpans. Phytochemistry 11:3283–3286

    CAS  Google Scholar 

  • Meragelman TL, Tucker KD, McCloud TG, Cardellina JH, Shoemaker RH (2005) Antifungal flavonoids from Hildegardia barteri. J Nat Prod 68:1790–1792

    PubMed  CAS  Google Scholar 

  • Militao GCG, Jimenez PC, Wilke DV, Pessoa C, Falcao MJC, Lima MAS, Silveira ER, de Moraes MO, Costa-Lotufo LV (2005) Antimitotic properties of pterocarpans isolated from Platymiscium floribundum on sea urchin eggs. Planta Med 71:683–685

    PubMed  CAS  Google Scholar 

  • Militao GCG, Dantas INF, Pessoa C, Falcao MJ, Silveira ER, Lima MA, Curi R, Lima T, Moraes MO, Costa-Lotufo LV (2006) Induction of apoptosis by pterocarpans from Platymiscium floribundum in HL-60 human leukemia cells. Life Sci 78:2409–2417

    PubMed  CAS  Google Scholar 

  • Miller RW, Spencer GF, Putnam AR (1989) (-)-5′-Methoxysativan, a new isoflavan from alfalfa. J Nat Prod 52:634–636

    CAS  Google Scholar 

  • Mitscher LA, Gollapudi SR, Gerlach DC, Drake SD, Veliz EA, Ward JA (1988a) Erycristin, a new antimicrobial pterocarpan from Erythrina crista-galli. Phytochemistry 27:381–385

    CAS  Google Scholar 

  • Mitscher LA, Okwute SK, Gollapudi SR, Drake S, Avona E (1988b) Antimicrobial pterocarpans of Nigerian Erythrina mildbraedii. Phytochemistry 27:3449–3452

    CAS  Google Scholar 

  • Mitscher LA, Okwute SK, Gollapudi SR, Keshavarz-Shokri A (1988c) Antimicrobial agents from higher plants. The isolation and structural characterization of two additional pterocarpan antimicrobial agents from Nigerian Erythrina mildbraedii. Heterocycles 27:2517–2522

    CAS  Google Scholar 

  • Miyase T, Ohtsubo A, Ueno A, Noro T, Kuroyanagi M, Fukushima S (1982) Studies on the pterocarpans from Melilotus alba Desr. Chem Pharm Bull 30:1986–1991

    CAS  Google Scholar 

  • Miyase T, Sano M, Yoshino K, Nonaka K (1999) Antioxidants from Lespedeza homoloba (II). Phytochemistry 52:311–319

    PubMed  CAS  Google Scholar 

  • Mizuno M, Matsuura N, Iinuma M, Tanaka T, Phengklai C (1990a) Isoflavones from stems of Euchresta horsfieldii. Phytochemistry 29:2675–2677

    CAS  Google Scholar 

  • Mizuno M, Tanaka T, Katsuragawa M, Saito H, Iinuma M (1990b) A new pterocarpan from the heartwood of Cladrastis platycarpa. J Nat Prod 53:498–499

    CAS  Google Scholar 

  • Mizuno M, Tanaka T, Tamura K, Matsuura N, Iinuma M, Phengklai C (1990c) Flavonoids in the roots of Euchresta horsfieldii in Thailand. Phytochemistry 29:2663–2665

    CAS  Google Scholar 

  • Morimoto M, Fukumto H, Hiratani M, Chavasiri W, Komai K (2006) Insect antifeedants, pterocarpans and pterocarpol, in heartwood of Pterocarpus macrocarpus Kruz. Biosci Biotech Biochem 70:1864–1868

    CAS  Google Scholar 

  • Mors WB, Do Nascimento MC, Parente JP, Da Silva MH, Melo PA, Suarez-Kurtz G (1989) Neutralization of lethal and myotoxic activities of South American rattlesnake venom by extracts and constituents of the plant Eclipta prostrata (Asteraceae). Toxicon 27:1003–1009

    PubMed  CAS  Google Scholar 

  • Mukherjee N, Gupta PK, Adityachaudhury N (1974) Antifungal activity of some pterocarpans and coumestans. Sci Cult 40:198–201

    CAS  Google Scholar 

  • Murthy MSR, Rao EV (1985) Further phytochemical studies on Tephrosia maxima. Fitoterapia 56:362

    CAS  Google Scholar 

  • Nagumo S, Fukuju A, Takayama M, Nagai M, Yanoshita R, Samejima Y (1999) Inhibition of lysoPAF acetyltransferase activity by components of licorice root. Biol Pharm Bull 22:1144–1146

    PubMed  CAS  Google Scholar 

  • Nakagawa M, Nakanishi K, Darko LL, Vick JA (1982) Structures of cabenegrins A-I and A-II, potent anti-snake venoms. Tetrahedron Lett 23:3855–3858

    CAS  Google Scholar 

  • Nakamura K, Akashi T, Aoki T, Kawaguchi K, Ayabe S (1999) Induction of isoflavonoid and retrochalcone branches of the flavonoid pathway in cultured Glycyrrhiza echinata cells treated with yeast extract. Biosci Biotech Biochem 63:1618–1620

    CAS  Google Scholar 

  • Nkengfack AE, Kouam J, Vouffo TW, Meyer M, Tempesta MS, Fomum ZT (1994a) An isoflavanone and a coumestan from Erythrina sigmoidea. Phytochemistry 35:521–526

    CAS  Google Scholar 

  • Nkengfack AE, Vouffo T, Fomum ZT, Meyer M, Bergendorff O, Sterner O (1994b) Prenylated isoflavanone from the roots of Erythrina sigmoidea. Phytochemistry 36:1047–1051

    CAS  Google Scholar 

  • Nkengfack AE, Vouffo TW, Vardamides JC, Fomum ZT, Bergendorff O, Sterner O (1994c) Erythrina studies. 30. Sigmoidins J and K, two new prenylated isoflavonoids from Erythrina sigmoidea. J Nat Prod 57:1172–1177

    CAS  Google Scholar 

  • Nkengfack AE, Vardamides JC, Fomum ZT, Meyer M (1995) Prenylated isoflavanone from Erythrina eriotricha. Phytochemistry 40:1803–1808

    PubMed  CAS  Google Scholar 

  • Nkengfack AE, Vouffo TW, Vardamides JC, Kouam J, Fomum ZT, Meyer M, Sterner O (1997) Erythrina studies: Part 34. Phenolic metabolites from Erythrina species. Phytochemistry 46:573–578

    CAS  Google Scholar 

  • O’Neill MJ, Adesanya SA, Roberts MF (1983) Antifungal phytoalexins in Phaseolus aureus Roxb. Z Naturforsch C: J Biosci 38C:693–697

    Google Scholar 

  • O’Neill MJ, Adesanya SA, Roberts MF, Pantry IR (1986) Inducible isoflavonoids from the lima bean, Phaseolus lunatus. Phytochemistry 25:1315–1322

    CAS  Google Scholar 

  • Obara Y, Matsubara H (1981) Isolation and identification of (-)-maackiain from derris roots. Meijo Daigaku Nogakubu Gakujutsu Hokoku 17:40–41

    CAS  Google Scholar 

  • Ohyama M, Tanaka T, Iinuma M, Burandt CL Jr. (1998) Phenolic compounds isolated from the roots of Sophora stenophylla. Chem Pharm Bull 46:663–668

    CAS  Google Scholar 

  • Omobuwajo OR, Adesanya SA, Babalola GO (1992) Isoflavonoids from Pycnanthus angolensis and Baphia nitida. Phytochemistry 31:1013–1014

    CAS  Google Scholar 

  • Orth H, Forschner P (1965) Formononetin and extraneous substances in Pterocarpus vidalianus. Holzforschung 19:111–117

    Article  CAS  Google Scholar 

  • Pachler KGR, Underwood WGE (1967) Proton magnetic resonance study of some pterocarpan derivatives. Conformation of the 6a,11a-dihydro-6H-benzo-furo[3,2-c][1]benzopyran ring system. Tetrahedron 23:1817–1826

    CAS  Google Scholar 

  • Palazzino G, Rasoanaivo P, Federici E, Nicoletti M, Galeffi C (2003) Prenylated isoflavonoids from Millettia pervilleana. Phytochemistry 63:471–474

    PubMed  CAS  Google Scholar 

  • Park JA, Kim HJ, Jin C, Lee Kt, Lee YS (2003) A new pterocarpan, (-)-maackiain sulfate, from the roots of Sophora subprostrata. Arch Pharmacal Res 26:1009–1013

    Article  CAS  Google Scholar 

  • Parthasarathy MR, Puri RN, Seshadri TR (1969) Components of Pterocarpus dalbergioides heartwood. Indian J Chem 7:118–120

    CAS  Google Scholar 

  • Peleg Y, Koder S, Rokem JS, Chet I, Goldberg I (1987) Phaseollin production in cell suspensions and whole plants of Phaseolus vulgaris. Plant Cell Tissue Organ Cult 9:207–215

    CAS  Google Scholar 

  • Pelter A, Amenechi PI (1969) Isoflavonoid and pterocarpinoid extractives of Lonchocarpus laxiflorus. J Chem Soc C 887–896

    Google Scholar 

  • Perrin DR, Cruickshank IAM (1969) Antifungal activity of pterocarpans towards Monilinia fructicola [Schlerotinia fructicola]. Phytochemistry 8:971–978

    CAS  Google Scholar 

  • Perrin DR, Whittle CP, Batterham TJ (1972) Structure of phaseollidin. Tetrahedron Lett 17:1673–1676

    Google Scholar 

  • Piccinelli AL, Fernandez MC, Cuesta-Rubio O, Hernandez IM, De Simone F, Rastrelli L (2005) Isoflavonoids isolated from Cuban propolis. J Agric Food Chem 53:9010–9016

    PubMed  CAS  Google Scholar 

  • Pistelli L, Giachi I, Lepori E, Bertoli A (2003a) Further saponins and flavonoids from Astragalus verrucosus Moris. Pharm Biol 41:568–572

    CAS  Google Scholar 

  • Pistelli L, Noccioli C, Appendino G, Bianchi F, Sterner O, Ballero M (2003b) Pterocarpans from Bituminaria morisiana and Bituminaria bituminosa. Phytochemistry 64:595–598

    CAS  Google Scholar 

  • Preston NW (1977) Induced pterocarpans of Psophocarpus tetragonolobus. Phytochemistry 16:2044–2045

    CAS  Google Scholar 

  • Pueppke SG, Van Etten HD (1975) Identification of three new pterocarpans (6a,11a-dihydro-6H-benzofuro[3,2-c][1]benzopyrans) from Pisum sativum infected with Fusarium solani. J Chem Soc Perkin Trans 1:946–948

    Google Scholar 

  • Pueppke SG, VanEtten HD (1976) Accumulation of pisatin and three additional antifungal pterocarpans in Fusarium solani infected epicotyls of Pisum sativum. Physiol Plant Pathol 8:51–61

    CAS  Google Scholar 

  • Purushothaman KK, Kishore VM, Narayanaswami V, Connolly JD (1971) Structure and stereochemistry of gangetin, a new pterocarpan from Desmodium gangeticum (Leguminosae). J Chem Soc C 2420–2422

  • Purushothaman KK, Chandrasekharan S, Balakrishna K, Connolly JD (1975) Gangetinin and desmodin, two minor pterocarpanoids of Desmodium gangeticum. Phytochemistry 14:1129–1130

    CAS  Google Scholar 

  • Rabelo LA, De Fatima Agra M, Da-Cunha EVL, Da Silva MS, Barbosa-Filho JM (2001) Homohesperetin and phaseollidin from Erythrina velutina. Biochem Syst Ecol 29:543–544

    PubMed  CAS  Google Scholar 

  • Rall GJH, Engelbrecht JP, Brink AJ (1970) Neorautanenia pterocarpans. Isolation, structure, and absolute configuration of (-)-2-hydroxypterocarpin, a new pterocarpan from Neorautanenia edulis. Tetrahedron 26:5007–5012

    CAS  Google Scholar 

  • Rall GJH, Engelbrecht JP, Brink AJ (1971) Chemistry of Neorautanenia edulis. Constitution of (-)-2-isopentenyl-3-hydroxy-8,9-methylenedioxypterocarpan, a new pterocarpan from the root bark. J S Afr Chem I 24:56–60

    CAS  Google Scholar 

  • Rall GJH, Brink AJ, Engelbre JP (1972) Neorautanenia pterocarpans – Isolation and structure of edulenol, A new pterocarpan from Neorautanenia edulis Casm. J S Afr Chem I 25:131

    Google Scholar 

  • Rao EV, Raju NR (1984) Two flavonoids from Tephrosia purpurea. Phytochemistry 23:2339–2342

    CAS  Google Scholar 

  • Reyes-Chilpa R, Gomez-Garibay F, Quijano L, Magos-Guerrero GA, Rios T (1994) Preliminary results on the protective effect of (-)-edunol, a pterocarpan from Brongniartia podalyrioides(Leguminosae), against Bothrops atrox venom in mice. J Ethnopharmacol 42:199–203

    PubMed  CAS  Google Scholar 

  • Reyes-Chilpa R, Jimenez-Estrada M (1995) Chemistry of antidotal plants. Interciencia 20:257–263

    Google Scholar 

  • Reyes-Chilpa R, Gomez-Garibay F, Moreno-Torres G, Jimenez-Estrada M, Quiroz-Vasquez RI (1998) Flavonoids and isoflavonoids with antifungal properties from Platymiscium yucatanum heartwood. Holzforschung 52:459–462

    Article  CAS  Google Scholar 

  • Robeson DJ, Ingham JL (1979) New pterocarpan phytoalexins from Lathyrus nissolia. Phytochemistry 18:1715–1717

    CAS  Google Scholar 

  • Rosa A, Deiana M, Corona G, Atzeri A, Incani A, Appendino G, Dessi MA (2005) Antioxidant properties of extracts and compounds from Psoralea morisiana. Eur J Lipid Sci Technol 107:521–529

    CAS  Google Scholar 

  • Roy R, Pathak NKR, Biswas M, Pandey VB (1994) Flavonoids of Clerodendron infortunatum. Orient J Chem 10:169–170

    CAS  Google Scholar 

  • Russell GB (1997) New isoflavonoids from root bark of kowhai (Sophora microphylla). Aust J Chem 50:333–336

    CAS  Google Scholar 

  • Ryu SY, Choi SU, Kim SK, No Z, Lee CO, Ahn JW, Kim SH (1997) In vitro antitumor activity of flavonoids from Sophora flavescens. Phytother Res 11:51–53

    CAS  Google Scholar 

  • Sakurai Y, Sakurai N, Taniguchi M, Nakanishi Y, Bastow KF, Wang XH, Cragg GM, Lee KH (2006) Rautandiols A and B, pterocarpans and cytotoxic constituents from Neorautanenia mitis. J Nat Prod 69:397–399

    PubMed  CAS  Google Scholar 

  • Salem MM, Werbovetz KA (2006) Isoflavonoids and other compounds from Psorothamnus arborescens with antiprotozoal activities. J Nat Prod 69:43–49

    PubMed  CAS  Google Scholar 

  • Sanduja R, Martin GE, Weinheimer AJ, Alam M, Hossain MB, Van der Helm D (1984) Secondary metabolites of the coelenterate Echinopora lamellosa. J Heterocycl Chem 21:845–848

    CAS  Google Scholar 

  • Sato M, Tanaka H, Fujiwara S, Hirata M, Yamaguchi R, Etoh H, Tokuda C (2003) Antibacterial property of isoflavonoids isolated from Erythrina variegata against cariogenic oral bacteria. Phytomedicine 10:427–433

    PubMed  CAS  Google Scholar 

  • Sawhney PL, Seshadri TR (1954) Chemical components of commercial woods and related plant materials. I. Neutral components from heartwoods and sapwoods of Pterocarpus dalbergioides and P. macrocarpus. J Sci Ind Res 13B:5–8

    Google Scholar 

  • Schaefer W, Friebe WG, Leinert H, Mertens A, Poll T, Von der Saal W, Zilch H, Nuber B, Ziegler ML (1993) Non-nucleoside inhibitors of HIV-1 reverse transcriptase: molecular modeling and x-ray structure investigations. J Med Chem 36:726–732

    CAS  Google Scholar 

  • Schoening A, Friedrichsen W (1989) The stereochemistry of pterocarpanoids. A theoretical study. Z Naturforsch B: Chem Sci 44:975–982

    CAS  Google Scholar 

  • Selvam C, Jachak SM, Oli RG, Thilagavathi R, Chakraborti AK, Bhutani KK (2004) A new cyclooxygenase (COX) inhibitory pterocarpan from Indigofera aspalathoides: structure elucidation and determination of binding orientations in the active sites of the enzyme by molecular docking. Tetrahedron Lett 45:4311–4314

    CAS  Google Scholar 

  • Seneviratne GI, Harborne JB (1992) Constitutive flavonoids and induced isoflavonoids as taxonomic markers in the genus Vigna. Biochem Syst Ecol 20:459–467

    CAS  Google Scholar 

  • Seo EK, Kim NC, Mi QW, Chai HY, Wall ME, Wani MC, Navarro HA, Burgess JP, Graham JG, Cabieses F, Tan GT, Farnsworth NR, Pezzuto JM, Kinghorn AD (2001) Macharistol, a new cytotoxic cinnamylphenol from the stems of Machaerium aristulatum. J Nat Prod 64:1483–1485

    PubMed  CAS  Google Scholar 

  • Shaker KH, Dockendorff K, Bernhardt M, Seifert K (2004) A new triterpenoid saponin from Ononis spinosa and two new flavonoid glycosides from Ononis vaginalis. Z Naturforsch B: Chem Sci 59:124–128

    CAS  Google Scholar 

  • Shibata S, Nishikawa Y (1963) Constituents of Japanese and Chinese crude drugs. VII. Constituents of the roots of Sophora subprostrata and Sophora japonica. Chem Pharm Bull 11:167–177

    CAS  Google Scholar 

  • Shirataki Y, Komatsu M, Yokoe I, Manaka A (1981) Studies on the constituents of Sophora species. XVI. Constituents of the root of Euchresta japonica Hook. f. ex Regel. (1). Chem Pharm Bull 29:3033–3036

    CAS  Google Scholar 

  • Shirataki Y, Tsuzuku T, Yokoe I, Hirano RT, Komatsu M (1990) Studies on the constituents of Sophora species. XXIII. Constituents of the root of Sophora chrysophylla Seem. (1). Chem Pharm Bull 38:1712–1716

    CAS  Google Scholar 

  • Shirataki Y, Noguchi M, Yokoe I, Tomimori T, Komatsu M (1991) Constituents of Sophora species. XXIV. Sophoraflavanones H, I and J, flavonostilbenes from Sophora moorcroftiana. Chem Pharm Bull 39:1568–1572

    CAS  Google Scholar 

  • Shirataki Y, Matsuoka S, Komatsu M, Ohyama M, Tanaka T, Iinuma M (1998) Studies on the constituents of Sophora species. Phytochemistry 50:695–701

    Google Scholar 

  • Shukla YN, Mishra M, Kumar S (2002) Euphane triterpenoid ester and a pterocarpan from Butea monosperma leaves. Indian J Chem Sect B 41B:881–883

    CAS  Google Scholar 

  • Shul’ts EE, Petrova TN, Shakirov MM, Chernyak EI, Tolstikov GA (2001) Flavonoids of roots of Glycyrrhiza uralensis growing in Siberia. Chem Nat Compd 36:362–368

    Google Scholar 

  • Silva VNT, Mara de Oliveira F, Conserva Lu (2001) Phenolic derivatives and terpenes from Acosmium bijugum. Biochem Syst Ecol 29:1189–1192

    CAS  Google Scholar 

  • Sirat HM, Russell GB (1989) The isolation and identification of two antifungal pterocarpans from Ulex europaeus L. Pertanika 12:395–398

    CAS  Google Scholar 

  • Soby S, Caldera S, Bates R, VanEtten H (1996) Detoxification of the phytoalexins maackiain and medicarpin by fungal pathogens of alfalfa. Phytochemistry 41:759–765

    CAS  Google Scholar 

  • Song C, Zheng Z, Liu D, Hu Z, Sheng W (1997) Pterocarpans and isoflavans from Astragalus membranaceus bunge. Zhiwu Xuebao 39:1169–1171

    CAS  Google Scholar 

  • Spencer GF, Jones BE, Plattner RD, Barnekow DE, Brinen LS, Clardy J (1991) A pterocarpan and two isoflavans from alfalfa. Phytochemistry 30:4147–4149

    CAS  Google Scholar 

  • Stevenson PC, Veitch NC (1996) Isoflavenes from the roots of Cicer judaicum. Phytochemistry 43:695–700

    CAS  Google Scholar 

  • Stevenson PC, Turner HC, Haware MP (1997) Phytoalexin accumulation in the roots of chickpea (Cicer arietinum L.) seedlings associated with resistance to fusarium wilt (Fusarium oxysporum f.sp. ciceri). Physiol Mol Plant Pathol 50:167–178

    CAS  Google Scholar 

  • Stevenson PC, Veitch NC (1998) The distribution of isoflavonoids in Cicer. Phytochemistry 48:995–1001

    CAS  Google Scholar 

  • Subarnas A, Oshima Y, Hikino H (1991) Isoflavans and a pterocarpan from Astragalus mongholicus. Phytochemistry 30:2777–2780

    CAS  Google Scholar 

  • Tahara S, Tanaka M, Barz W (1997) Fungal metabolism of prenylated flavonoids. Phytochemistry 44:1031–1036

    CAS  Google Scholar 

  • Takahashi T, Hamada C, Suzuki O, Tajima M (2002) Hair growth period-extending agents containing Sophora extracts. Jpn Kokai Tokkyo Koho JP 205922

  • Tanaka T, Ohyama M, Kawasaka Y, Iinuma M (1994) Tetrapterols A and B: novel flavonoid compounds from Sophora tetraptera. Tetrahedron Lett 35:9043–9044

    CAS  Google Scholar 

  • Tanaka H, Tanaka T, Etoh H (1997a) Three pterocarpans from Erythrina crista-galli. Phytochemistry 45:835–838

    CAS  Google Scholar 

  • Tanaka H, Tanaka T, Etoh H (1997b) Two pterocarpans from Erythrina orientalis. Phytochemistry 47:475–477

    Google Scholar 

  • Tanaka H, Tanaka T, Etoh H (1998a) Two pterocarpans from Erythrina orientalis. Phytochemistry 47:475–477

    CAS  Google Scholar 

  • Tanaka H, Tanaka T, Hosoya A, Kitade Y, Etoh H (1998b) An isoflavan from Erythrina x bidwillii. Phytochemistry 47:1397–1400

    CAS  Google Scholar 

  • Tanaka T, Ohyama M, Iinuma M, Shirataki Y, Komatsu M, Burandt CL (1998c) Isoflavonoids from Sophora secundiflora, S. arizonica and S. gypsophila. Phytochemistry 48:1187–1193

    CAS  Google Scholar 

  • Tanaka H, Etoh H, Shimizu H, Oh-Uchi T, Terada Y, Tateishi Y (2001a) Erythrinan alkaloids and isoflavonoids from Erythrina poeppigiana. Planta Med 67:871–873

    CAS  Google Scholar 

  • Tanaka H, Etoh H, Watanabe N, Shimizu H, Ahmad M, Rizwani GH (2001b) Erysubins C-F, four isoflavonoids from Erythrina suberosa var. glabrescences. Phytochemistry 56:769–773

    CAS  Google Scholar 

  • Tanaka H, Hirata M, Etoh H, Watanabe N, Shimizu H, Ahmad M, Khan Z, Anwar M (2001c) Three new isoflavonoids from Erythrina variegata. Heterocycles 55:2341–2347

    CAS  Google Scholar 

  • Tanaka H, Oh-Uchi T, Etoh H, Shimizu H, Tateishi Y (2002) Isoflavonoids from the roots of Erythrina poeppigiana. Phytochemistry 60:789–794

    PubMed  CAS  Google Scholar 

  • Tanaka H, Hirata M, Etoh H, Sako M, Sato M, Murata J, Murata H, Darnaedi D, Fukai T (2003a) Four new isoflavonoids and a new 2-arylbenzofuran from the roots of Erythrina variegata. Heterocycles 60:2767–2773

    CAS  Google Scholar 

  • Tanaka H, Oh-Uchi T, Etoh H, Sako M, Asai F, Fukai T, Sato M, Murata J, Tateishi Y (2003b) Isoflavonoids from roots of Erythrina zeyheri. Phytochemistry 64:753–758

    CAS  Google Scholar 

  • Tanaka H, Oh-Uchi T, Etoh H, Sako M, Sato M, Fukai T, Tateishi Y (2003c) An arylbenzofuran and four isoflavonoids from the roots of Erythrina poeppigiana. Phytochemistry 63:597–602

    CAS  Google Scholar 

  • Tarus PK, Machocho AK, Lang’at-Thoruwa CC, Chhabra SC (2002) Flavonoids from Tephrosia aequilata. Phytochemistry 60:375–379

    PubMed  CAS  Google Scholar 

  • Telikepalli H, Gollapudi SR, Keshavarz-Shokri A, Velazquez L, Sandmann RA, Veliz EA, Rao KVJ, Madhavi AS, Mitscher LA (1990) Isoflavonoids and a cinnamyl phenol from root extracts of Erythrina variegata. Phytochemistry 29:2005–2007

    CAS  Google Scholar 

  • Tian F, McLaughlin JL (2000) Bioactive flavonoids from the black locust tree, Robinia pseudoacacia. Pharm Biol 38:229–234

    Article  CAS  Google Scholar 

  • Triangali C (1995) Identification of bioactive metabolites from the bark of Pericopsis (Afrormosia) laxiflora. Phytochem Anal 6:289–291

    CAS  Google Scholar 

  • Uchiyama T, Furukawa M, Isobe S, Makino M, Akiyama T, Koyama T, Fujimoto Y (2003) New oleanane-type triterpene saponins from Millettia speciosa. Heterocycles 60:655–661

    CAS  Google Scholar 

  • Ueno A, Ichikawa M, Fukushima S, Saiki Y, Noro T, Kunio N, Morinaga K, Kuwano H (1973) Constituents of Lespedeza homoloba. III. Structures of lespein and lespedezin. Chem Pharm Bull 21:2715–2721

    CAS  Google Scholar 

  • Van Duuren BL (1961) Chemistry of edulin, neorautone, and related compounds from Neorautanenia edulis C. A Sm J Org Chem 26:5013–5020

    Google Scholar 

  • Van Etten HD (1976) Antifungal activity of pterocarpans and other selected isoflavonoids. Phytochemistry 15:655–659

    CAS  Google Scholar 

  • Van Etten HD, Matthews PS, Mercer EH (1983) (+)-Maackiain and (+)-Medicarpin as phytoalexins in Sophora japonica and identification of the (-) isomers by biotransformation. Phytochemistry 22:2291–2295

    CAS  Google Scholar 

  • Van Heerden FR, Brandt EV, Roux DG (1978) Structure and synthesis of some complex pyranoisoflavonoids from the bark of Dalbergia nitidula Welw. ex Bak. J Chem Soc Perkin Trans 1:137–145

    Google Scholar 

  • Van Puyvelde L, De Kimpe N, Mudaheranwa JP, Gasiga A, Schamp N, Declercq JP, Van Meerssche M (1987) Isolation and structural elucidation of potentially insecticidal and acaricidal isoflavone-type compounds from Neorautanenia mitis. J Nat Prod 50:349–356

    CAS  Google Scholar 

  • Vanangamudi A, Gandhidasan R, Raman PV (1998) Constituents of Dalbergia malabarica. Fitoterapia 69:180

    CAS  Google Scholar 

  • Vogelsang R, Berger E, Hagedorn T, Muhlenbeck U, Tenhaken R, Barz W (1994) Characterization of metabolic changes involved in hypersensitive-like browning reactions of chickpea (Cicer arietinum L.) cell-cultures following challenge by Ascochyta rabiei culture filtrate. Physiol Mol Plant Pathol 44:141–155

    CAS  Google Scholar 

  • Wang Y, Mu T, Chen J, Luo S (2003) Studies on chemical constituents from the root of Polygonatum kingianum. Zhongguo Zhongyao Zazhi 28:524–527

    PubMed  CAS  Google Scholar 

  • Wang SF, Ridsdill-Smith TJ, Ghisalberti EL (2005) Chemical defenses of Trifolium glanduliferum against redlegged earth mite Halotydeus destructor. J Agric Food Chem 53:6240–6245

    PubMed  CAS  Google Scholar 

  • Wanjala CCW, Juma BF, Bojase G, Gashe BA, Majinda RRT (2002) Erythrinaline alkaloids and antimicrobial flavonoids from Erythrina latissima. Planta Med 68:640–642

    PubMed  CAS  Google Scholar 

  • Wu LJ, Miyase T, Ueno A, Kuroyanagi M, Noro T, Fukushima S (1985) Studies on the constituents of Sophora flavescens Aiton. Chem Pharm Bull 33:3231–3236

    CAS  Google Scholar 

  • Xiao HB, Krucker M, Albert K, Liang XM (2004) Determination and identification of isoflavonoids in Radix astragali by matrix solid-phase dispersion extraction and high-performance liquid chromatography with photodiode array and mass spectrometric detection. J Chromatogr A 1032:117–124

    PubMed  CAS  Google Scholar 

  • Yagi A, Fukunaga M, Akita K, Fujimoto K, Okuzako N (1993) Antifungal pterocarpan derivatives. Shoyakugaku Zasshi 47:105–110

    CAS  Google Scholar 

  • Yahara S, Emura S, Feng H, Nohara T (1989) Leguminous plants. 15. Studies on the constituents of the bark of Dalbergia hupeana. Chem Pharm Bull 37:2136–2138

    CAS  Google Scholar 

  • Yamamoto H, Ichimura M, Tanaka T, Iinuma M, Mizuno M (1991) A trifolirhizin malonate from Sophora flavescens var. angustifolia and its stability. Phytochemistry 30:1732–1733

    CAS  Google Scholar 

  • Yenesew A, Midiwo JO, Miessner M, Heydenreich M, Peter MG (1998) Two prenylated flavanones from stem bark of Erythrina burttii. Phytochemistry 48:1439–1443

    CAS  Google Scholar 

  • Yenesew A, Midiwo JO, Heydenreich M, Schanzenbach D, Peter MG (2000) Two isoflavanones from the stem bark of Erythrina sacleuxii. Phytochemistry 55:457–459

    PubMed  CAS  Google Scholar 

  • Yenesew A, Midiwo JO, Guchu SM, Heydenreich M, Peter MG (2002) Three isoflav-3-enes and a 2-arylbenzofuran from the root bark of Erythrina burttii. Phytochemistry 59:337–341

    PubMed  CAS  Google Scholar 

  • Yenesew A, Irungu B, Derese S, Midiwo JO, Heydenreich M, Peter MG (2003) Two prenylated flavonoids from the stem bark of Erythrina burttii. Phytochemistry 63:445–448

    PubMed  CAS  Google Scholar 

  • Yoon JS, Sung SH, Park JH, Kim YC (2004) Flavonoids from Spatholobus suberectus. Arch Pharmacal Res 27:589–592

    CAS  Google Scholar 

  • Yusupova SS, Batirov EKh, Abdullaev S, Malikov VM (1984) Flavonoids of Vexibia alopecuroides. Khim Prir Soedin 250–251

  • Yusupova SS, Batirov EKh, Kiyamitdinova F, Malikov VM (1986) Isoflavonoids of Cicer mogoltavicum. Khim Prir Soedin 639–640

  • Zeng JF, Li GL, Shen JK, Zhu DY, Chen K, Lee KH (1997) Manuifolins D, E, and F: New Isoflavonoids from Maackia tenuifolia. J Nat Prod 60:918–920

    PubMed  CAS  Google Scholar 

  • Zeng JF, Zhu DY (1999) Chemical constituents of the roots of Maackia tenuifolia (Leguminosae). Zhiwu Xuebao 41:997–1001

    CAS  Google Scholar 

  • Zhao Y, Wang B, Lei L, Guo M, Zhang R, Huang L, Yi Y, Lou Z (1993) Constituents of the flavonoids from the roots of Sophora flavescens Ait. Zhiwu Xuebao 35:304–306

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ignacio Rodríguez-García.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiménez-González, L., Álvarez-Corral, M., Muñoz-Dorado, M. et al. Pterocarpans: interesting natural products with antifungal activity and other biological properties. Phytochem Rev 7, 125–154 (2008). https://doi.org/10.1007/s11101-007-9059-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11101-007-9059-z

Keywords

Navigation