Skip to main content
Log in

Gas composition strategies for the successful scale-up of Catharanthus roseus cell cultures for the production of ajmalicine

  • Review Paper
  • Published:
Phytochemistry Reviews Aims and scope Submit manuscript

Abstract

Ajmalicine, serpentine, catharanthine, and vindoline are monoterpenoid indole alkaloids (MIAs) of commercial interest which are produced by the Catharanthus roseus plant. Cultures of C. roseus have been investigated as a potential source of these pharmaceutically important compounds since the early 1960s. In addition, their production from C. roseus cultures has served as a model system for investigating secondary metabolism and for evaluating production-enhancing strategies. Initially, this review will survey (1) the MIAs of interest for large-scale production from plant cell cultures and (2) the volumetric productivities of a specific MIA, ajmalicine, achieved and projected using plant cell cultures. To meet the need for these valuable compounds, the production of these MIAs from plant cell cultures must be successfully reproduced in large-scale aerated and agitated reactors. While the large-scale cultivation of plant cell cultures is currently feasible, initial attempts at scale-up may yield results that differ from that optimized in flasks. To bridge the jump between production in flasks and production in large-scale bioreactors, changes introduced with scale-up such as gas composition must be identified and rationally manipulated to reproduce or even improve growth and secondary metabolite production. Hence, this review will (1) identify the effects of gas composition (i.e., O2, CO2, ethylene, or other endogenous volatile compounds) on growth and secondary metabolism and (2) draw operating strategies for optimizing the gas composition for growth of C. roseus cultures and the production of ajmalicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AS:

Anthranilate synthase

BA:

Benzyl adenine

DI :

Diameter of the impeller

DO:

Dissolved oxygen concentration

DW:

Dry weight

FW:

Fresh weight

g :

Gravitational acceleration

G10H:

Geraniol 10-hydroxylase

IAA:

Indole-3-acetic acid

kLa:

Mass transfer coefficient

MIA:

Monoterpenoid indole alkaloid

μ:

Viscosity of the culture

N:

Agitation rate

Pmo :

Power dissipated by the impeller in absence of aeration

ppm:

Parts per million

ρ:

Density of the culture

rpm:

Revolutions per minute

SG:

Strictosidine β-glucosidase

SSS:

Strictosidine synthase

TDC:

Tryptophan decarboxylase

VOCs:

Volatile organic compounds

vol:

Volume

vvm:

Volume of gas per volume of culture per minute

wt:

Weight

References

  • Aerts RJ, Gisi D, De Carolis E, De Luca V, Bauman TW (1994) Methyl jasmonate vapor increases the developmentally controlled synthesis of alkaloids in Catharanthus and Cinchona seedlings. Plant J 5:635–643

    CAS  Google Scholar 

  • Archambault J (1991) Large-scale culture of surface-immobilized Catharanthus roseus cells. Enzyme Microb Technol 13:882–892

    PubMed  CAS  Google Scholar 

  • Asada M, Shuler ML (1989) Stimulation of ajmalicine production and excretion from Catharanthus roseus: effects of adsorption in situ, elicitors, and alginate immobilization. Appl Microbiol Biotechnol 30:475–481

    CAS  Google Scholar 

  • Babcock PA, Carew DP (1962) Tissue culture of the Apocynaceae. I. Culture requirements and alkaloid analysis. Lloydia 25:209–213

    CAS  Google Scholar 

  • Baldwin IT, Halitschke R, Paschold A, von Dahl CC, Preston CA (2006) Volatile signaling in plant–plant interactions: “talking trees” in the genomics era. Science 311:812–815

    PubMed  CAS  Google Scholar 

  • Bhadra R, Vani S, Shanks JV (1993) Production of indole alkaloids by selected hairy root lines of Catharanthus roseus. Biotechnol Bioeng 41(5):581–592

    CAS  PubMed  Google Scholar 

  • Bourgaud F, Gravot A, Milesi S, Gontier E (2001) Production of plant secondary metabolites: a historical perspective. Plant Sci 161(5):839–851

    CAS  Google Scholar 

  • Breuling M, Alfermann AW, Reinhard E (1985) Cultivation of cell cultures of Berberis wilsonae in 20-L airlift bioreactors. Plant Cell Rep 4:220–223

    CAS  Google Scholar 

  • Burg SP, Burg EA (1967) Molecular requirements for the biological activity of ethylene. Plant Physiol 42:144–152

    PubMed  CAS  Google Scholar 

  • Canel C, Lopes-Cardoso MI, Whitmer S, van der Fits L, Pasquali G, van der Heijden R, Hoge JHC, Verpoorte R (1998) Effects of over-expression of strictosidine synthase and tryptophan decarboxylase on alkaloid production by cell cultures of Catharanthus roseus. Planta 205(3):414–419

    PubMed  CAS  Google Scholar 

  • Chabner BA, Allegra CJ, Curt GA, Calabresi P (1996) Antineoplastic agents. In: Hardman JG, Limbird LE (eds) Goodman and Gilman’s the pharmacological basis of therapeutics, 9th edn. McGraw-Hill, Health Professions Division, New York, pp 1257–1260

    Google Scholar 

  • Cho GH, Kim DI, Pedersen H, Chin C-K (1988) Ethephon enhancement of secondary metabolite synthesis in plant cell cultures. Biotechnol Prog 4:184–188

    CAS  Google Scholar 

  • Curtis WR (1999) Achieving economic feasibility for moderate-value food and flavor additives. In: Fu T-J, Singh G, Curtis WR (eds) Plant cell and tissue culture for the production of food ingredients. Kluwer Academic/Plenum Publishers, New York, pp 225–236

    Google Scholar 

  • Deus-Neumann B, Zenk MH (1984) Instability of indole alkaloid production in Catharanthus roseus cell suspension cultures. Planta Med 50(5):427–431

    PubMed  CAS  Google Scholar 

  • DiIorio AA, Cheetham RD, Weathers PJ (1992) Carbon dioxide improves the growth of hairy roots cultured on solid medium and in nutrient mists. Appl Microbiol Biotechnol 37(4):463–467

    CAS  Google Scholar 

  • Drapeau D, Blanch HW, Wilke CR (1987) Economic assessment of plant cell culture for the production of ajmalicine. Biotechnol Bioeng 30(8):946–953

    CAS  PubMed  Google Scholar 

  • Ducos JP, Pareilleux A (1986) Effect of aeration rate and influence of pCO2 in large-scale cultures of Catharanthus roseus cells. Appl Microbiol Biotechnol 25:101–105

    CAS  Google Scholar 

  • Ducos JP, Feron G, Pareilleux A (1988) Growth and activities of enzymes of primary metabolism in batch cultures of Catharanthus roseus cells. Appl Microbiol Biotechnol 25:101–105

    Google Scholar 

  • Dunlop EH, Namdev PK, Rosenberg MZ (1994) Effect of fluid shear forces on plant cell suspensions. Chem Eng Sci 49(14):2263–2276

    CAS  Google Scholar 

  • Ellard-Ivey M, Douglas CJ (1996) Role of jasmonates in the elicitor- and wound-inducible expression of defense genes in parsley and transgenic tobacco. Plant Physiol 112:183–192

    PubMed  CAS  Google Scholar 

  • Farmer EE, Ryan CA (1990) Interplant communication: airborne methyl jasmonate induces synthesis of proteinase inhibitors in plant leaves. Proc Natl Acad Sci USA 87:7713–7716

    PubMed  CAS  Google Scholar 

  • Gantet P, Imbault N, Thiersault M, Doireau P (1998) Necessity of a functional octadecanoid pathway for indole alkaloid synthesis by Catharanthus roseus cell suspensions cultured in an auxin-starved medium. Plant Cell Physiol 39:220–225

    CAS  Google Scholar 

  • Gathercole RWE, Mansfield KJ, Street HE (1976) Carbon dioxide as an essential requirement for cultured sycamore cells. Physiol Plant 37:213–217

    CAS  Google Scholar 

  • Goodbody AE, Endo T, Vukovic J, Kutney JP, Choi LSL, Misawa M (1988) Enzymatic coupling of catharanthine and vindoline to form 3′,4′-anhydrovinblastine by horseradish peroxidase. Planta Med 54(2):136–140

    PubMed  CAS  Google Scholar 

  • Gundlach H, Muller MJ, Kutchan TM, Zenk MH (1992) Jasmonic acid is a signal transducer in elicitor-induced plant cell cultures. Proc Natl Acad Sci USA 89:2389–2393

    PubMed  CAS  Google Scholar 

  • Halliwell B (1978) Biochemical mechanisms accounting for the toxic action of oxygen on living organisms: the key role of superoxide dismutase. Cell Biol Int Rep 2(2):113–128

    PubMed  CAS  Google Scholar 

  • Hegarty PK, Smart NJ, Scragg AH, Fowler MW (1986) The aeration of Catharanthus roseus L. G. Don suspension cultures in airlift bioreactors: the inhibitory effect at high aeration rates on culture growth. J Exp Bot 37:1911–1920

    CAS  Google Scholar 

  • Hernandez-Dominguez E, Campos-Tamayo F, Vazquez-Flota F (2004) Vindoline synthesis in in vitro shoot cultures of Catharanthus roseus. Biotechnol Lett 26(8):671–674

    PubMed  CAS  Google Scholar 

  • Hibino K, Ushiyama K (1999) Commercial production of ginseng by plant tissue culture technology. In: Fu T-J, Singh G, Curtis WR (eds) Plant cell and tissue culture for the production of food ingredients. Kluwer Academic/Plenum Publishers, New York, pp 215–224

    Google Scholar 

  • Hooker BS, Lee JM, An G (1989) Response of plant tissue culture to a high shear environment. Enzyme Microb Technol 11:484–490

    CAS  Google Scholar 

  • Hsiao TY, Bacani FT, Carvalho EB, Curtis WR (1999) Development of a low capital investment reactor system: application for plant cell suspension culture. Biotechnol Prog 15:114–122

    PubMed  CAS  Google Scholar 

  • Hughes EH, Shanks JV (2002) Metabolic engineering of plants for alkaloid production. Metab Eng 4(1):41–48

    PubMed  CAS  Google Scholar 

  • Hughes EH, Hong S-B, Gibson SI, Shanks JV, San K-Y (2004) Expression of a feedback-resistant anthranilate synthase in Catharanthus roseus hairy roots provides evidence for tight regulation of terpenoid indole alkaloid levels. Biotechnol Bioeng 86(6):718–727

    PubMed  CAS  Google Scholar 

  • Irmler S, Schroder G, St-Pierre B, Crouch NP, Hotze M, Schmidt J, Strack D, Matern U, Schroder J (2000) Indole alkaloid biosynthesis in Catharanthus roseus: new enzyme activities and identification of cytochrome P450 CYP72A1 as secologanin synthase. Plant J 24(6):797–804

    PubMed  CAS  Google Scholar 

  • Jay V, Genestier S, Courduroux J-C (1992) Bioreactor studies on the effect of dissolved oxygen concentrations on growth and differentiation of carrot (Daucus carota L.) cell cultures. Plant Cell Rep 11:605–608

    CAS  Google Scholar 

  • Kato A, Shimizu Y, Nagai S (1975) Effect of initial k L a on the growth of tobacco cells in batch culture. J Ferment Technol 53:744–751

    CAS  Google Scholar 

  • Kessell RHJ, Carr AH (1972) The effect of dissolved oxygen concentration on growth and differentiation of carrot (Daucus carota) tissue. J Exp Bot 23(77):996–1007

    CAS  Google Scholar 

  • Kieran PM, MacLoughlin PF, Malone DM (1997) Plant cell suspension cultures: some engineering considerations. Biotechnol J 59(1, 2):39–52

    CAS  Google Scholar 

  • Kim D-I, Pedersen H, Chin C-K (1991) Cultivation of Thalictrum rugosum cell suspension in an improved airlift bioreactor: stimulatory effect of carbon dioxide and ethylene on alkaloid production. Biotechnol Bioeng 38:331–339

    CAS  PubMed  Google Scholar 

  • Kobayashi Y, Fukui H, Tabata M (1989) Effect of oxygen supply on berberine production in cell suspension cultures and immobilized cells of Thalictrum minus. Plant Cell Rep 8:255–258

    CAS  Google Scholar 

  • Kobayashi Y, Fukui H, Tabata M (1991a) Effect of carbon dioxide and ethylene on berberine production and cell browning in Thalictrum minus cell cultures. Plant Cell Rep 9:496–499

    CAS  Google Scholar 

  • Kobayashi Y, Masakazu H, Fukui H, Tabata M (1991b) The role of ethylene in berberine production by Thalictrum minus cell suspension cultures. Phytochemistry 30:3605–3609

    CAS  Google Scholar 

  • Leckie F, Scragg AH, Cliffe KC (1991a) An investigation into the role of initial k L a on the growth and alkaloid accumulation by cultures of Catharanthus roseus. Biotechnol Bioeng 37:364–370

    CAS  Google Scholar 

  • Leckie F, Scragg AH, Cliffe KC (1991b) Effect of bioreactor design and agitator speed on the growth and alkaloid accumulation by cultures of Catharanthus roseus. Enzyme Microb Technol 13:296–305

    CAS  Google Scholar 

  • Leckie F, Scragg AH, Cliffe KR (1991c) Effect of impeller design and speed on the large-scale cultivation of suspension cultures of Catharanthus roseus. Enzyme Microb Technol 13:801–810

    CAS  Google Scholar 

  • Lee JM (1992) Biochemical engineering. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  • Lee CWT, Shuler ML (1991) Different shake flask closures alter gas phase composition and ajmalicine production in Catharanthus roseus cell suspensions. Biotechnol Tech 5:173–178

    CAS  Google Scholar 

  • Lee CWT, Shuler ML (2000) The effect of inoculum density and conditioned medium on the production of ajmalicine and catharanthine from immobilized Catharanthus roseus cells. Biotechnol Bioeng 67(1):61–67

    PubMed  CAS  Google Scholar 

  • Lee-Parsons CWT, Shuler ML (2005) Sparge gas composition affects biomass and ajmalicine production from immobilized cell cultures of Catharanthus roseus. Enzyme Microb Technol 37(4):424–434

    CAS  Google Scholar 

  • Lee-Parsons CWT, Ertürk S, Tengtrakool J (2004) Enhancement of ajmalicine production in Catharanthus roseus cell cultures with methyl jasmonate is dependent on timing and dosage of elicitation. Biotechnol Lett 26(20):1595–1599

    PubMed  CAS  Google Scholar 

  • Linden JC, Haigh JR, Mirjalili N, Phisaphalong M (2001) Gas concentration effects on secondary metabolite production by plant cell cultures. Adv Biochem Eng Biotechnol 72:27–62

    PubMed  CAS  Google Scholar 

  • Markx GH, ten Hoopen HJG, Meijer JJ, Vinke KL (1991) Dielectric spectroscopy as a novel and convenient tool for the study of shear sensitivity of plant cells in suspension culture. J Biotechnol 19:145–158

    PubMed  CAS  Google Scholar 

  • Maurel B, Pareilleux A (1985) Effect of carbon dioxide on the growth of cell suspensions of Catharanthus roseus. Biotechnol Lett 7(5):313–318

    CAS  Google Scholar 

  • McKeon TA, Yang SF (1988) Biosynthesis and metabolism of ethylene. In: Davies PJ (ed) Plant hormones and their role in plant growth and development. Kluwer Academic Publishers, The Netherlands, pp 94–112

    Google Scholar 

  • Meijer JJ, ten Hoopen HJG, Luyben KCAM (1993) Effects of hydrodynamic stress on cultured plant cells: a literature survey. Enzyme Microb Technol 15(3):234–238

    CAS  Google Scholar 

  • Memelink J, Verpoorte R, Kijne W (2001) ORCAnization of jasmonate-responsive gene expression in alkaloid metabolism. Trends Plant Sci 6:212–219

    PubMed  CAS  Google Scholar 

  • Menke FLH, Champion A, Kijne JW, Memelink J (1999a) A novel jasmonate- and elicitor-responsive element in the periwinkle secondary metabolite biosynthetic gene Str interacts with a jasmonate- and elicitor-inducible AP2-domain transcription factor, ORCA2. EMBO J 18:4455–4463

    CAS  Google Scholar 

  • Menke FLH, Parchmann S, Mueller MJ, Kijne JW, Memelink J (1999b) Involvement of the octadecanoid pathway and protein phosphorylation in fungal elicitor-induced expression of terpenoid indole alkaloid biosynthetic genes in Catharanthus roseus. Plant Physiol 119:1289–1296

    CAS  Google Scholar 

  • Mirjalili N, Linden JC (1995) Gas phase composition effects on suspension cultures of Taxus cuspidata. Biotechnol Bioeng 48(2):123–132

    CAS  PubMed  Google Scholar 

  • Moreno PRH, van der Heijden R, Verpoorte R (1993) Effect of terpenoid precursor feeding and elicitation on formation of indole alkaloids in cell suspension cultures of Catharanthus roseus. Plant Cell Rep 12:702–705

    CAS  Google Scholar 

  • Moreno PRH, van der Heijden R, Verpoorte R (1995) Cell and tissue cultures of Catharanthus roseus: a literature survey. Plant Cell Tissue Organ Cult 42:1–25

    Google Scholar 

  • Nesius KK, Fletcher JS (1973) Carbon dioxide and pH requirements of non-photosynthetic tissue culture cells. Physiol Plant 28:259–263

    CAS  Google Scholar 

  • Odjakova M, Hadjiivanova C (2001) The complexity of pathogen defense in plants. Bulg J Plant Physiol 27:101–109

    CAS  Google Scholar 

  • O’Keefe BR, Mahady GB, Gills JJ, Beecher CWW, Schilling AB (1997) Stable vindoline production in transformed cell cultures of Catharanthus roseus. J Nat Prod 60(3):261–264

    CAS  Google Scholar 

  • O’Neil MJ (ed) (2001) The Merck index: an encyclopedia of chemicals, drugs, and biologicals. Merck Research Laboratory Publishers, Whitehouse Station

  • Pareilleux A, Chaubet N (1981) Mass cultivation of Medicago sativa growing on lactose: kinetic aspects. Eur J Appl Microbiol Biotechnol 11:222–225

    CAS  Google Scholar 

  • Payne GF, Bringi V, Prince C, Shuler ML (1992) Plant cell and tissue culture in liquid systems. Hanser Publishers, Germany, pp 123–143

    Google Scholar 

  • Radman R, Saez T, Bucke C, Keshavarz T (2003) Elicitation of plants and microbial cell systems. Biotechnol Appl Biochem 37:91–102

    PubMed  CAS  Google Scholar 

  • Reinhard E, Kreis W, Barthlen U, Helmbold U (1989) Semicontinuous cultivation of Digitalis lanata cells: production of β-methyldigoxin in a 300-l airlift bioreactor. Biotechnol Bioeng 34:502–508

    CAS  PubMed  Google Scholar 

  • Sahai O, Knuth M (1985) Commercializing plant tissue culture processes: economics, problems and prospects. Biotechnol Prog 1(1):1–9

    Article  Google Scholar 

  • Satdive RK, Fulzele DP, Eapen S (2003) Studies on production of ajmalicine in shake flasks by multiple shoot cultures of Catharanthus roseus. Biotechnol Prog 19(3):1071–1075

    PubMed  CAS  Google Scholar 

  • Schlatmann JE, Nuutila AM, van Gulik WM, ten Hoopen HJG, Verpoorte R, Heijnen JJ (1993) Scaleup of ajmalicine production by plant cell cultures of Catharanthus roseus. Biotechnol Bioeng 41:253–262

    CAS  PubMed  Google Scholar 

  • Schlatmann JE, Fonck E, ten Hoopen HJG, Heijnen JJ (1994a) The negligible role of carbon dioxide and ethylene in ajmalicine production by Catharanthus roseus cell suspensions. Plant Cell Rep 14:157–160

    CAS  Google Scholar 

  • Schlatmann JE, Moreno PRH, Vinke JL, ten Hoopen HJG, Verpoorte R, Heijnen JJ (1994b) Effect of oxygen and nutrient limitation on ajmalicine production and related enzyme activities in high density cultures of Catharanthus roseus. Biotechnol Bioeng 44(4):461–468

    CAS  Google Scholar 

  • Schlatmann JE, Vinke JL, ten Hoopen HJG, Heijnen JJ (1995) Relation between dissolved oxygen concentration and ajmalicine production in high density cultures of Catharanthus roseus. Biotechnol Bioeng 45:435–439

    CAS  PubMed  Google Scholar 

  • Schlatmann JE, Moreno PRH, Vinke JL, ten Hoopen HJG, Verpoorte R, Heijnen JJ (1997) Gaseous metabolites and the ajmalicine production rate in high density cell cultures of Catharanthus roseus. Enzyme Microb Technol 20:107–115

    CAS  Google Scholar 

  • Scragg AH, Morris P, Allan EJ, Bond P, Fowler MW (1987) Effect of scale-up on serpentine formation by Catharanthus roseus suspension cultures. Enzyme Microb Technol 9:619–624

    CAS  Google Scholar 

  • Shuler ML, Kargi F (2002) Bioprocess engineering: basic concepts. Prentice-Hall, Upper Saddle River

    Google Scholar 

  • Sim SJ, Chang HN, Liu JR, Jung KH (1994) Production and secretion of indole alkaloids in hairy root cultures of Catharanthus roseus: effects of in situ adsorption, fungal elicitation and permeabilization. J Ferment Bioeng 78(3):229–234

    CAS  Google Scholar 

  • Singh J, Handa KL, Rao PR, Atal CK (1978) Recovery of ajmalicine (raubasine) from Vinca rosea. Res Ind 23(3):166–167

    CAS  Google Scholar 

  • Smart NJ, Fowler MW (1981) Effect of aeration on large-scale cultures of plant cells. Biotechnol Lett 3:171–176

    Google Scholar 

  • Smart NJ, Fowler MW (1984) Mass cultivation of Catharanthus roseus cells using a nonmechanically agitated bioreactor. Appl Biochem Biotechnol 9:209–216

    CAS  Google Scholar 

  • Snape JB, Thomas NH, Callow JA (1989) How suspension cultures of Catharanthus roseus respond to oxygen limitation: small-scale tests with applications to large scale cultures. Biotechnol Bioeng 34:1058–1062

    CAS  PubMed  Google Scholar 

  • Spieler H, Alfermann AW, Reinhard E (1985) Biotransformation of β-methyldigitoxin by cell cultures of Digitalis lanata in airlift and stirred tank reactors. Appl Microb Biotechnol 23:1–4

    CAS  Google Scholar 

  • Tabata M, Fujita Y (1985) Production of shikonin by plant cell cultures. In: Zatlin M, Day P, Hallaender A (eds) Biotechnology in plant science. Academic, Orlando, pp 207–218

    Google Scholar 

  • Talarczyk A, Hennig J (2001) Early defense responses in plants infected with pathogenic organisms. Cell Mol Biol Lett 6:955–970

    PubMed  CAS  Google Scholar 

  • Tate JL, Payne GF (1991) Plant cell growth under different levels of oxygen and carbon dioxide. Plant Cell Rep 10(1):22–25

    CAS  Google Scholar 

  • Taticek RA, Moo-Young M, Legge RL (1990) Effect of bioreactor configuration on substrate uptake by cell suspension cultures of the plant Eschscholtzia californica. Eur J Appl Microbiol Biotechnol 33:280–286

    CAS  Google Scholar 

  • Tikhomiroff C, Jolicoeur M (2002) Screening of Catharanthus roseus secondary metabolites by high-performance liquid chromatography. J Chromatogr A 955(1):87–93

    PubMed  CAS  Google Scholar 

  • Turner ER, Quartley CE (1956) Studies in the respiratory and carbohydrate metabolism of plant tissues: VIII. An inhibition of respiration in peas induced by ‘oxygen poisoning’. J Exp Bot 7(21):362–371

    CAS  Google Scholar 

  • Ulbrich B, Wiesner W, Arens H (1985) Large scale production of rosmarinic acid from plant cell cultures of Coleus blumei Benth. In: Neumann KH, Barz W, Reinhold E (eds) Primary and secondary metabolism of plant cell cultures. Springer, Berlin Heidelberg New York, pp 293–303

    Google Scholar 

  • Van der Fits L, Memelink J (2000) ORCA3, a jasmonate-responsive transcriptional regulator of plant primary and secondary metabolism. Science 289:295–297

    PubMed  Google Scholar 

  • Van der Fits L, Memelink J (2001) The jasmonate-inducible AP2/ERF-domain transcription factor ORCA3 activates gene expression via interaction with a jasmonate-responsive promoter element. Plant J 25:43–53

    PubMed  Google Scholar 

  • Van der Fits L, Zhang H, Menke FLH, Deneka M, Memelink J (2000) A Catharanthus roseus BPF-1 homologue interacts with an elicitor-responsive region of the secondary metabolite biosynthetic gene Str and is induced by elicitor via a JA-independent signal transduction pathway. Plant Mol Biol 44:675–685

    PubMed  Google Scholar 

  • Van der Heijden R, Verpoorte R, ten Hoopen HJG (1989) Cell and tissue cultures of Catharanthus roseus (L) G. Don: a literature survey. Plant Cell Tissue Organ Cult 18:231–280

    Google Scholar 

  • Van Gulik WM, Nuutila AM, Vinke KL, ten Hoopen HJG, Heijnen JJ (1994) Effects of carbon dioxide, air flow rate, and inoculation density on the batch growth of Catharanthus roseus cell suspensions in stirred fermentors. Biotechnol Prog 10:335–339

    Google Scholar 

  • Vazquez-Flota F, Moreno-Valenzuela O, Miranda-Ham ML, Coello-Coello J, Loyola-Vargas VM (1994) Catharanthine and ajmalicine synthesis in Catharanthus roseus hairy root cultures: medium optimization and elicitation. Plant Cell Tissue Organ Cult 38(2/3):273–279

    CAS  Google Scholar 

  • Vazquez-Flota F, De Luca V, Carrillo-Pech M, Canto-Flick A, De Lourdes M-HM (2002) Vindoline biosynthesis is transcriptionally blocked in Catharanthus roseus cell suspension cultures. Mol Biotechnol 22(1):1–8

    PubMed  CAS  Google Scholar 

  • Verpoorte R, van der Heijden R, Schripsema J (1993) Plant cell biotechnology for the production of alkaloids: present status and prospects. J Nat Prod 56:186–207

    CAS  Google Scholar 

  • Verpoorte R, van der Heijden R, Moreno PRH (1997) Biosynthesis of terpenoid indole alkaloids in Catharanthus roseus cells. In: Cordell G (ed) The alkaloids: chemistry and biology, vol 49. Academic, San Diego, pp 221–299

    Google Scholar 

  • Verpoorte R, van der Heijden R, ten Hoopen HJG, Memelink J (1999) Metabolic engineering of plant secondary metabolite pathways for the production of fine chemicals. Biotechnol Lett 21(6):467–479

    CAS  Google Scholar 

  • Wagner F, Vogelmann H (1977) Cultivation of plant tissue cultures in bioreactors and formation of secondary products. In: Barz W, Reinhard E, Zenk MH (eds) Plant tissue culture and its biotechnological applications. Springer, Berlin Heidelberg New York, pp 245–252

    Google Scholar 

  • Wenkert E, Roychaudhuri DK (1957) A general method of determination of the stereochemistry of certain indole alkaloids. The stereoconfiguration of serpentine and alstonine. J Am Chem Soc 79:1519–1520

    CAS  Google Scholar 

  • Westphal K (1990) Large-scale production of new biologically active compounds in plant–cell cultures. In: Nijkamp HJJ, van der Plas LHW, van Aartrijk J (eds) Progress in plant cellular and molecular biology. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 601–608

    Google Scholar 

  • Whitmer S, Canel C, Hallard D, Goncalves C, Verpoorte R (1998) Influence of precursor availability on alkaloid accumulation by transgenic cell line of Catharanthus roseus. Plant Physiol 116(2):853–857

    PubMed  CAS  Google Scholar 

  • Whitmer S, van der Heijden R, Verpoorte R (2002a) Effect of precursor feeding on alkaloid accumulation by a strictosidine synthase over-expressing transgenic cell line S1 of Catharanthus roseus. Plant Cell Tissue Organ Cult 69(1):85–93

    CAS  Google Scholar 

  • Whitmer S, van der Heijden R, Verpoorte R (2002b) Effect of precursor feeding on alkaloid accumulation by a tryptophan decarboxylase over-expressing transgenic cell line T22 of Catharanthus roseus. J Biotechnol 96(2):193–203

    CAS  Google Scholar 

  • Wood HN, Braun AC (1961) The regulation of certain essential biosynthetic systems in normal and crown-gall tumor cells. Proc Natl Acad Sci USA 47:1907–1913

    PubMed  CAS  Google Scholar 

  • Zenk MH, El-Shagi H, Arens H, Stockigt J, Weiler EW, Deus B (1977) Formation of the indole alkaloids serpentine and ajmalicine in cell suspension cultures of Catharanthus roseus. In: Barz W, Reinhard E, Zenk MH (eds) Plant tissue culture and its biotechnological applications. Springer, Berlin Heidelberg New York, pp 25–43

    Google Scholar 

  • Zhao J, Zhu WH, Hu Q (2001) Effects of light and plant growth regulators on the biosynthesis of vindoline and other indole alkaloids in Catharanthus roseus callus cultures. Plant Growth Regul 33(1):43–49

    CAS  Google Scholar 

  • Zhong JJ, Fujiyama K, Seki T, Yoshida T (1994) A quantitative analysis of shear effects on cell suspension and cell culture of Perilla frutescens in bioreactors. Biotechnol Bioeng 44:649–654

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carolyn W. T. Lee-Parsons.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee-Parsons, C.W.T. Gas composition strategies for the successful scale-up of Catharanthus roseus cell cultures for the production of ajmalicine. Phytochem Rev 6, 419–433 (2007). https://doi.org/10.1007/s11101-006-9046-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11101-006-9046-9

Keywords

Navigation