Skip to main content
Log in

Zinc accumulation, photosynthetic gas exchange, and chlorophyll a fluorescence in Zn-stressed Miscanthus × giganteus plants

  • Original paper
  • Published:
Photosynthetica

Abstract

Accumulation and distribution of zinc within Miscanthus × giganteus plants grown on elevated Zn concentrations and their photosynthetic performance were investigated. High concentrations of Zn in soils caused an increase of its concentrations in all plant organs. The bioconcentration factor, bioaccumulation factor, and translocation factor were lower than one indicating that M. × giganteus is an excluder plant species. Excessive Zn induced visible leaf damage, i.e. chlorosis and necrosis, only in the oldest leaves, pointing to Zn accumulation. Elevated amounts of Zn in leaves significantly lowered the photosynthetic rate, transpiration rate, stomatal conductance, intercellular CO2 concentrations, parameters of chlorophyll a fluorescence, and chlorophyll b content. Despite Zn excess in leaves, there was no severe reduction in the maximal quantum yield of PSII photochemistry, indicating a high photosynthetic capacity, high tolerance to elevated Zn concetrations, and ability of M. × giganteus to grow on Zn-contaminated soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BCF:

bioconcentration factor

Car:

carotenoids

Chl:

chlorophyll

C i :

intercellular CO2 concentration

DM:

dry mass

E :

transpiration rate

F0 :

minimal fluorescence yield of the dark-adapted state

Fm :

maximal fluorescence yield of the dark-adapted state

Fv :

variable fluorescence

Fv/Fm :

maximal quantum yield of PSII photochemistry

gs:

stomatal conductance

P N :

photosynthetic rate

R :

respiration

TF:

translocation factor8

References

  • Arnon D.I.: Copper enzymes in isolated chloroplasts: polyphenoloxidases in Beta vulgaris.–Plant Physiol. 24: 1–15, 1949.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Baker A.J.M.: Accumulators and excluders-strategies in the response of plants to heavy metals. − J. Plant Nutr. 3: 643–654, 1981.

    Article  CAS  Google Scholar 

  • Baker N.R., Rosenqvist E.: Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities.–J. Exp. Bot. 55: 1607–1621, 2004.

    Article  PubMed  CAS  Google Scholar 

  • Bang J., Kamala-Kannan S., Lee K.J. et al.: Phytoremediation of heavy metals in contaminated water and soil using Miscanthus sp. Goedae-Uksae 1.–Int. J. Phytoremediat. 17: 515–20, 2015.

    Article  CAS  Google Scholar 

  • Beale C.V., Bint D.A., Long S.P.: Leaf photosynthesis in the C4-grass Miscanthus x giganteus, growing in the cool temperate climate of southern England.–J. Exp. Bot. 47: 267–273, 1996.

    Article  CAS  Google Scholar 

  • Björkman O., Demmig B.: Photon yield of O2 evolution and chlorophyll fluorescence at 77k among vascular plants of diverse origins.–Planta 170: 489–504, 1987.

    Article  PubMed  Google Scholar 

  • Bonnet M., Camares O., Veisseire P.: Effects of zinc and influence of Acremonium lolii on growth parameters, chlorophyll a fluorescence and antioxidant enzyme activities of ryegrass (Lolium prenne L. cv. Apollo).–J. Exp. Bot. 51: 945–953, 2000.

    PubMed  CAS  Google Scholar 

  • Bremner J.M.: Nitrogen total.–In: Sparks D.L. (ed.): Methods of Soil Analysis, Part 3: Chemical Methods. Pp. 1085–1122. SSSA Book Series 5. Soil Science Society of America, Madison 1996.

    Google Scholar 

  • Clifton-Brown J.C., Lewandowski I., Bangerth F. et al.: Comparative responses to water stress in stay-green, rapid-and slow senecing genotypes of the biomass crop, Miscanthus.‒New Phytol. 154: 335–345, 2002.

    Article  Google Scholar 

  • Dhir B., Sharmila P., Pardha Saradhi P.P.: Photosynthetic performance of Salvinia natans exposed to chromium and zinc rich wastewater.–Braz. J. Plant Physiol. 20: 61–70, 2008.

    Article  CAS  Google Scholar 

  • Dželetović Ž., Mihailović N., Živanović I.: Prospects of using bioenergy crop Miscanthus × giganteus in Serbia.–In: Méndez-Vilas A. (ed.): Materials and Processes for Energy: Communicating Current Research and Technological Developments. Pp. 360–370. Formatex Research Center, Badajoz 2013.

    Google Scholar 

  • Egner H., Riehm H., Domingo W.R.: [Studies on the chemical soil analysis as a basis for the assessment of nutrient status of the soil, II: chemical extractions metods to phosphorus and potassium determination.].–Kungliga Lantbrukshügskolans Annaler 26: 199–215, 1960. [In German]

    CAS  Google Scholar 

  • Eriksson J.E.: Concentrations of 61 Trace Elements in Sewage Sludge, Farmyard Manure, Mineral Fertilizers, Precipitation and in Oil and Crops. Pp. 69. Swedish EPA, Stockholm 2001.

    Google Scholar 

  • FAO (Food and Agriculture Organization): Guidelines: Land Evaluation for Rainfed Agriculture. Soils Bulletin No 52. Pp. 237. FAO, Rome 1983.

  • Farage P.K., Blowers D., Long S.P. et al.: Low growth temperatures modify the efficiency of light use by photosystem II for CO2 assimilation in leaves of two chilling-tolerant C-4 species, Cyperus longus L. and Miscanthus×giganteus.–Plant Cell Environ. 29: 720–728, 2006.

    Article  PubMed  CAS  Google Scholar 

  • Fernando A.L., Oliviera J.F.S.: Phytoremediation by Miscanthus x giganteus of soils contaminated with heavy metals.‒In: Gaballah I. (ed.): REWAS` 04-Global Symposium on Recycling, Waste Treatment and Clean Technology. Pp. 2419–2427. Minerals, Metals & Materials Society, Madrid 2004.

    Google Scholar 

  • Figala J., Vranová V., Rejšek K. et al.: Giant Miscanthus (Miscanthus × giganteus Greef et Deu.)‒a promising plant for soil remediation: a minireview.‒Acta Univ. Agric. Silvic. Mendelianae Brun. 63: 2241–2246, 2015.

    Article  CAS  Google Scholar 

  • Firmin S., Labidi S., Fontaine J. et al.: Arbuscular mycorrhizal fungal inoculation protects Miscanthus x giganteus against trace element toxicity in a highly metal-contaminated site.–Sci. Total Environ. 527-528: 91–99, 2015.

    Article  PubMed  CAS  Google Scholar 

  • Fonteyne S., Lootens P., Muylle H. et al.: Chilling tolerance and early vigour-related characteristics evaluated in two Miscanthus genotypes.‒Photosynthetica 54: 295–306, 2016.

    Article  Google Scholar 

  • Gajić G., Djurdjević L., Kostić O. et al.: Assessment of phytoremediation potential and an adaptive response of Festuca rubra L., sown on fly ash deposits: Native grass has a pivotal role in ecorestoration management.‒Ecol. Eng. 93: 250–261, 2016.

    Article  Google Scholar 

  • Głowacka K., Jørgensen U., Kjeldsen J.B. et al.: Can the exceptional chilling tolerance of C4 photosynthesis found in Miscanthus x giganteus be exceeded? Screening of a novel Miscanthus Japanese germplasm collection.–Ann. Bot.-London 115: 981–990, 2015.

    Article  CAS  Google Scholar 

  • Guo H., Hong C., Chen X. et al.: Different growth and physiological responses to cadmium of the three Miscanthus species.‒PLoS ONE 11: e0153475, 2016.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Herselman J.E., Steyn C.E., Fey M.V.: Baseline concentration of Cd, Co, Cr, Cu, Pb, Ni and Zn in surface soils of South Africa.–S. Afr. J. Sci. 101: 509–512, 2005.

    CAS  Google Scholar 

  • Hiscox J.D., Israelstam G.F.: A method for the extraction of chlorophyll from leaf tissue without maceration.–Can. J. Bot. 57: 1332–1334, 1979.

    Article  CAS  Google Scholar 

  • Ings J., Mur L.A.J., Robson R.R.H. et al.: Physiological and growth responses to water deficit in the bioenergy crop Miscanthus x giganteus.–Front. Plant Sci. 4: 468, 2013.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jiao X., Kørup K., Andersen M.N. et al.: Low-temperature leaf photosynthesis of a Miscanthus germplasm collection correlates positively to shoot growth rate and specific leaf area.‒Ann. Bot.-London 117: 1229–1239, 2016.

    Article  CAS  Google Scholar 

  • Jiao X., Kørup K., Andersen M.N. et al.: Can miscanthus C4 photosynthesis compete with festulolium C3 photosynthesis in a temperate climate?‒GCB Bioenergy 9: 18–30, 2017.

    Article  CAS  Google Scholar 

  • Kabata-Pendias A.: Trace Elements in Soils and Plants. 4th ed. Pp. 505. Taylor and Francis, Boca Raton 2011.

    Google Scholar 

  • Kloke A., Sauerbeck D.R., Vetter H.: The contamination of plants and soils with heavy metals and the transport of metals in terrestrial food chains.–In: Nriagu J.O., Andreae M.O. (ed.): Changing Metal Cycles and Human Health. Report of the Dahlem Workshop on Changing Metal Cycles and Human Health Berlin. Pp. 446. Springer-Verlag GmbH, Berlin 1983.

    Google Scholar 

  • Korzeniowska J., Stanislawska-Glubiak E.: Phytoremediation potential of Miscanthus x giganteus and Spartina pectinata in soil contaminated with heavy metals.‒Environ. Sci. Polutt. R. 22: 11648–11657, 2015.

    Article  CAS  Google Scholar 

  • Kocoń A., Jurga B.: The evaluation of growth and phytoextraction potential of Miscanthus x giganteus and Sida hermafrodita on soil contaminated simultaneously with Cd, Cu, Ni, Pb, and Zn.‒Environ. Sci. Polutt. R. 24: 4990–5000, 2017.

    Article  CAS  Google Scholar 

  • Lambers H., Chapin F.S., Pons T.L.: Plant Physiological Ecology. Pp. 540. Springer-Verlag, New York 1998.

    Book  Google Scholar 

  • Li C., Xiao B., Wang Q.H. et al.: Phytoremediation of Zn-and Cr-contaminated soil using two promising energy grasses.‒Water Air Soil Pollut. 225: 2027, 2014.

    Article  CAS  Google Scholar 

  • Lu Y.: The occurrence of a thylakoid-localized small zinc finger protein in land plants.‒Plant Signal. Behav. 6: 1881–1885, 2011.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ma J.-Y., Sun W., Koteyeva N.K. et al.: Influence of light and nitrogen on the photosynthetic efficiency in the C4 plant Miscanthus x giganteus.‒Photosynth. Res. 131: 1–13, 2017.

    Article  PubMed  CAS  Google Scholar 

  • Macnicol R.D., Beckett P.H.T.: Critical tissue concentrations of potentially toxic elements.‒Plant Soil 85: 107–129, 1985.

    Article  CAS  Google Scholar 

  • Marschner H.: Mineral Nutrition of Higher Plants, 2nd Ed. Pp. 889. Academic Press Limited, London 1995.

    Google Scholar 

  • Martens J., Smolders E. Zinc.‒In: Alloway B.J. (ed.): Heavy Metals in Soils‒Trace Metals and Metalloids in Soils and their Bioavailability. Series: Environmental Pollution 22. Pp. 465–493. Springer, Dordrecht 2013.

    Chapter  Google Scholar 

  • McCalmont J.P., Hastings A., McNamara N.P. et al.: Environmental costs and benefits of growing Miscanthus for bioenergy in the UK.–GCB Bioenergy 9: 489–507, 2017.

    Article  PubMed  Google Scholar 

  • Nadgórska-Socha A., Ptasiński B., Kita A.: Heavy metal bioaccumulation and antioxidative responses in Cardaminopsis arenosa and Plantago lanceolata leaves from metalliferous and non-metalliferous sites: a field study.‒Ecotoxicology 22: 1422–1434, 2013.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Naidu S.L., Long S.P.: Potential mechanisms of low-temperature tolerance of C4 photosynthesis in Miscanthus × giganteus: an in vivo analysis.–Planta 220: 145–155, 2004.

    Article  PubMed  CAS  Google Scholar 

  • Nsanganwimana F., Pourrut B., Mench M. et al.: Suitability of Miscanthus species for managing inorganic and organic contaminated land and restoring ecosystem services. A review.‒J. Environ. Manage. 143: 123–134, 2014.

    Article  PubMed  CAS  Google Scholar 

  • Pandey V.C., Bajpai O., Singh N.: Energy crops in sustainable phytoremediation.‒Renew. Sust. Energ. Rev. 54: 58–73, 2016.

    Article  Google Scholar 

  • Pansu M., Gautheyroy J.: Handbook of Soil Analysis. Mineralogical, Organic and Inorganic Methods. Pp. 993. Springer, Berlin 2006.

    Book  Google Scholar 

  • Pavel P.B., Puschenreiter M., Wenzel W.W. et al.: Aided phytostabilization using Miscanthus sinensis × giganteus on heavy metal-contaminated soils.‒Sci. Total Environ. 479-480: 125–131, 2014.

    Article  PubMed  CAS  Google Scholar 

  • Pelfrêne A, Kleckerová A, Pourrut B. et al.: Effect of Miscanthus cultivation on metal fractionation and human bioaccessibility in metal-contaminated soils: comparison between greenhouse and field experiments.‒Environ. Sci. Pollut. R. Int. 22: 3043–54, 2015.

    Article  CAS  Google Scholar 

  • Pidlisnyuk V., Stefanovska T., Lewis E.E. et al.: Miscanthus as a productive biofuel crop for phytoremediation.‒Crit. Rev. Plant Sci. 33: 1–19, 2014.

    Article  Google Scholar 

  • Pilgrim W., Hughes R.N.: Lead, cadmium, arsenic and zinc in the ecosystem surrounding a lead smelter.–Environ. Monit. Assess. 32: 1–20, 1994.

    Article  PubMed  CAS  Google Scholar 

  • Pogrzeba M., Rusinowski S., Sitko K. et al.: Relationships between soil parameters and physiological status of Miscathus x giganteus cultivated on soil contaminated with trace elements under NPK fertilization vs. microbial inoculation.–Environ. Pollut. 225: 163–174, 2017.

    Article  PubMed  CAS  Google Scholar 

  • Prasad M.N.V.: Heavy Metal Stress in Plants‒From Biomolecules to Ecosystems. Pp. 462. Springer-Verlag, Berlin–Heidelberg 2004.

    Book  Google Scholar 

  • Rutkowska B., Szulc W., Bomze K.: Plant availability of zinc in differentiated soil conditions.‒Fresen. Environ. Bull. 22: 2542–2546, 2013.

    CAS  Google Scholar 

  • Sagardoy R., Morales F., López-Millán A.F. et al..: Effects of zinc toxicity in sugar beet (Beta vulgaris L.) plants grown in hydroponics.‒Plant Biol. 11: 339–350, 2009.

    Article  PubMed  CAS  Google Scholar 

  • Sagardoy R., Vázquez S., Florez-Sarasa I. et al.: Stomatal and mesophyll conductances to CO2 are the main limitations to photosynthesis in sugar beet (Beta vulgaris) plants grown with excess zinc.‒New Phytol. 187: 145–158, 2010.

    Article  PubMed  CAS  Google Scholar 

  • Sinclair S.A., Krämer U.: The zinc homeostasis network of land plants.‒Biochim Biophys Acta. 1823: 1553–1567, 2012.

    Article  PubMed  CAS  Google Scholar 

  • Sun Q., Ye Z.H., Wang X.R. et al.: Increase of glutathione in mine population of Sedum alfredii: a Zn hyperaccumulator and Pb accumulator.‒Phytochemistry 66: 2549–3256, 2005.

    Article  PubMed  CAS  Google Scholar 

  • Sun W., Ubierna N., Ma J.-Y. et al.: The influence of light quality on C4 photosynthesis under steady-state conditions in Zea mays and Miscanthus × giganteus: changes in rates of photosynthesis but not the efficiency of the CO2 concentrating mechanism.‒Plant Cell Environ. 35: 982–993, 2012.

    Article  PubMed  CAS  Google Scholar 

  • Sun W., Ubierna N., Ma J.-Y. et al.: The coordination of C4 photosynthesis and the CO2-concentrating mechanism in maize and Miscanthus × giganteus in response to transient changes in light quality.‒Plant Physiol. 164: 1283–1292, 2014.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Szalontai B., Horváth L., Debreczeny M. et al.: Molecular rearrangements of thylakoids after heavy metal poisoning, as seen by Fourier transform infrared (FTIR) and electron spin resonance (ESR) spectroscopy.‒Photosynth Res. 61: 241–252, 1999.

    Article  CAS  Google Scholar 

  • Takeda A., Kimura K., Yamasaki S.I.: Analysis of 57 elements in Japanese soils, with special reference to soil group, and agricultural use.–Geoderma 119: 291–307, 2004.

    Article  CAS  Google Scholar 

  • Técher D., Laval-Gilly P., Bennasroune A. et al.: An appraisal of Miscanthus x giganteus cultivation for fly ash revegetation and soil restoration.–Ind. Crop. Prod. 36: 427–433, 2012.

    Article  CAS  Google Scholar 

  • Tsalandzono N.G., Omokolo N.D., Tita A.M.: Effect of Fe2+, Mn2+, Zn2+, and Pb2+ on H+/K+ fluxes in excised Pistia stratiotes roots.–Biol. Plantarum 36: 591–597, 1994.

    Article  Google Scholar 

  • Tsonev T., Lidon F.J.C.: Zinc in plants‒An overview.‒Emir. J. Food Agr. 24: 322–333, 2012.

    Google Scholar 

  • Tjurin I.V.: Agrochemical Methods of Soil Analysis. Pp. 75–102. Nauka, Moscow 1965.

    Google Scholar 

  • Ubierna N., Sun W., Kramer D.M. et al.: The efficiency of C4 photosynthesis under low light conditions in Zea mays, Miscanthus × giganteus and Flaveria bidentis.‒Plant Cell Environ. 36: 365–381, 2013.

    Article  PubMed  CAS  Google Scholar 

  • USEPA Method 3051: Microwave assisted acid digestion of sediments, sludges and oils.‒In: Test Methods for Evaluating Solid Waste, SW-846. Environmental Protection Agency, Washington, DC 1998.

  • USEPA Method 3052: Microwave assisted acid digestion of siliceous and organically based matrices.‒In: Test Methods for Evaluating Solid Waste, SW-846. Environmental Protection Agency, Washington, DC 1996.

  • Vaillant N., Monnet F., Hitmi A. et al.: Comparative study of responses in four Datura species to a zinc stress.–Chemosphere 59: 1005–1013, 2005.

    Article  PubMed  CAS  Google Scholar 

  • van Assche F., Clijsters H.: Inhibition of photosynthesis in Phaseoulus vugaris by treatment with toxic concentration of zinc: effect on ribulose-1,5-bisphosphate carboxylase/oxygenase.‒J. Plant Physiol. 125: 355–360, 1986.

    Article  Google Scholar 

  • Wanat N., Austruy A., Joussein E. et al.: Potential of Miscanthus x giganteus grown on highly contaminated technosols.‒J. Geochem. Explor. 126-127: 78–84, 2013.

    Article  CAS  Google Scholar 

  • Wellburn A.R.: The spectral determination of chlorophylls a and b, as well as total carotenoids using various solvents with spectrophotometers of different resolution.–J. Plant Physiol. 144: 307–313, 1994.

    Article  CAS  Google Scholar 

  • Yang H.M., Zhang X.Y., Wang G.X.: Effects of heavy metals on stomatal movements in broad bean leaves.–Russ. J. Plant Physl+ 51: 464–468, 2004.

    Article  CAS  Google Scholar 

  • Zub H.W., Brancourt-Hulmel M.: Agronomic and physiological performances of different species of Miscanthus, a major energy crop. A review.–Agron. Sustain. Dev. 30: 201–214, 2010.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Rakić.

Additional information

Acknowledgements: The authors gratefully acknowledge financial support from the Serbian Ministry of Education, Science, and Technological Development (grant No. 173030 and grant No. 173018). We thank the reviewers and the editors for their valuable suggestions and comments. We would also like to thank Mr. Raymond Dooley for editing the English language of the manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andrejić, G., Gajić, G., Prica, M. et al. Zinc accumulation, photosynthetic gas exchange, and chlorophyll a fluorescence in Zn-stressed Miscanthus × giganteus plants. Photosynthetica 56, 1249–1258 (2018). https://doi.org/10.1007/s11099-018-0827-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11099-018-0827-3

Additional key words

Navigation