Skip to main content
Log in

Assessment of tolerances in Mitragyna parvifolia (Roxb.) Korth. and Syzygium cumini Keels. seedlings to waterlogging

  • Original paper
  • Published:
Photosynthetica

Abstract

Waterlogging is one of the critical factors controlling the distribution, regeneration, and survival of vegetation in wetlands. Here, we tested the hypothesis that Mitragyna parvifolia (Roxb.) Korth. and Syzygium cumini Keels, inhabiting the Keoladeo National Park, a Ramsar wetland (Bharatpur, India), are tolerant to waterlogging. The morphological and photosynthetic variables of four-month-old seedlings subjected to waterlogging, along with the concentrations of macroand micronutrients, were examined. After 35 days, treatment was halted due to high mortality of S. cumini seedlings in contrast to that of M. parvifolia seedlings. Significant declines in most of the studied variables were observed in both species when compared with their respective controls. In addition, M. parvifolia seedlings developed adventitious roots and lenticels and showed an increased root biomass. Based on the results, we concluded that adaptive traits displayed by M. parvifolia seedlings facilitate its tolerance to waterlogging in contrast to S. cumini seedlings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Chl:

chlorophyll

ChlF:

chlorophyll fluorescence

E :

transpiration rate

F0 :

minimal fluorescence yield of the darkadapted state

Fm :

maximal fluorescence yield of the dark-adapted state

Fv/Fm :

maximal quantum yield of PSII photochemistry

g s :

stomatal conductance

KNP:

Keoladeo National Park

LA:

leaf area

P N :

net photosynthetic rate

MC:

M. parvifolia control

MW:

M. parvifolia waterlogged

SC:

S. cumini control

SW:

S. cumini waterlogged

WUE:

water-use efficiency (= PN/E).

References

  • Allen S.E.: Analysis of vegetation and other organic materials. — In: Allen S.E., Davison W., Grimshaw H.M. et al. (ed.): Chemical Analysis of Ecological Materials. Pp. 46–60. Blackwell Sci. Publ., Oxford 1974.

    Google Scholar 

  • Andersen P.C., Lombard P.B., Westwood M.N.: Leaf conductance, growth, and survival of willow and deciduous fruit tree species under flooded soil conditions. — J. Am. Soc. Hortic. Sci. 109: 132–138, 1984.

    Google Scholar 

  • Arbona V., López-Climent M.F., Pérez-Clemente R.M. et al.: Maintenance of a high photosynthetic performance is linked to flooding tolerance in citrus. — Environ. Exp. Bot. 66: 135–142, 2009.

    Article  CAS  Google Scholar 

  • Armstrong W., Brändle R., Jackson M.B.: Mechanisms of flood tolerance in plants. — Acta. Bot. Neerl. 43: 307–358, 1994.

    Article  CAS  Google Scholar 

  • Arnell N.W.: Climate change and global water resources. — Glob. Environ. Chang. 9: S31–S49, 1999.

    Article  Google Scholar 

  • Arnon D.I.: Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. — Plant Physiol. 24: 1–15, 1949.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ashraf M., Arfan M.: Gas exchange characteristics and water relations in two cultivars of Hibiscus esculentus under waterlogging. — Biol. Plantarum 49: 459–462, 2005.

    Article  Google Scholar 

  • Ashraf M.A.: Waterlogging stress in plants: A review. — Afr. J. Agric. Res. 7: 1976–1981, 2012.

    Google Scholar 

  • Bąba W., Kalaji H.M., Kompała-Bąba A. et al.: Acclimatization of photosynthetic apparatus of tor grass (Brachypodium pinnatum) during expansion. — PLoS ONE, 11: e0156201, 2016.

    Google Scholar 

  • Bailey-Serres J., Voesenek L.A.C.J.: Flooding stress: acclimations and genetic diversity. — Annu. Rev. Plant. Biol. 59: 313–339, 2008.

    Article  CAS  PubMed  Google Scholar 

  • Banach K., Banach A.M., Lamers L.P. et al.: Differences in flooding tolerance between species from two wetland habitats with contrasting hydrology: implications for vegetation development in future floodwater retention areas. — Ann. Bot.-London 103: 341–351, 2009.

    Article  Google Scholar 

  • Bassi N., Kumar M.D., Sharma A. et al.: Status of wetlands in India: A review of extent, ecosystem benefits, threats and management strategies. — J. Hydrol. Reg. Stud. 2: 1–19, 2014.

    Article  Google Scholar 

  • Bertolde F.Z., Almeida A.A.F., Pirovani C.P. et al.: Physiological and biochemical responses of Theobroma cacao L. genotypes to flooding. — Photosynthetica 50: 447–457, 2012.

    Article  CAS  Google Scholar 

  • Bertolde F.Z., Almeida A.A.F., Corrêa R.X. et al.: Molecular, physiological and morphological analysis of water-logging tolerance in clonal genotypes of Theobroma cacao L. — Tree Physiol. 30: 56–67, 2010.

    Article  CAS  PubMed  Google Scholar 

  • Bidalia A., Hanief M., Rao K.S.: Tolerance of Mitragyna parvifolia (Roxb.) Korth. seedlings to NaCl salinity. — Photosynthetica 55: 231–239, 2016.

    Article  Google Scholar 

  • Bishnoi N.R., Krishnamoorthy H.N.: Effect of waterlogging and gibberellic acid on leaf gas exchange in peanut (Arachis hypogaea L.). — J. Plant Physiol. 139: 503–505, 1992.

    Article  CAS  Google Scholar 

  • Blom C.W.P.M., Voesenek L.A.C.J.: Flooding: The survival strategies of plants. — Trends Ecol. Evol. 11: 290–295, 1996.

    Article  CAS  PubMed  Google Scholar 

  • Brar A.S.: Case study 4: India-Keoladeo National Park. — In: Hali A.J. (ed.): Wetlands, Biodiversity and the Ramsar Convention, Ramsar. Pp. 68–70. Ramsar Convention Bureau, Gland 1996.

    Google Scholar 

  • Capon S.J., James C.S., Williams L. et al.: Responses to flooding and drying in seedlings of a common Australian desert floodplain shrub: Muehlenbeckia florulenta Meisn. (Tangled lignum). — Environ. Exp. Bot. 66: 178–185, 2009.

    Article  Google Scholar 

  • Chauhan M., Gopal B.: Biodiversity and management of Keoladeo National Park (India) ̶ a wetland of international importance. — In: Gopal B., Junk W.J., Davis J.A. (ed.): Biodiversity in Wetlands: Assessment, Function and Conservation. Pp. 217–256. Backhuys Publishers, Leiden 2001.

  • Chen H., Qualls R.G., Blank R.R.: Effect of soil flooding on photosynthesis, carbohydrate partitioning and nutrient uptake in the invasive exotic Lepidium latifolium. — Aquat. Bot. 82: 250–268, 2005.

    Article  CAS  Google Scholar 

  • Colmer T.D., Voesenek L.A.C.J.: Flooding tolerance: suites of plant traits in variable environments. — Funct. Plant Biol. 36: 665–681, 2009.

    Article  Google Scholar 

  • Cooke S.J., OConnor C.M.O.: Making conservation physiology relevant to policy makers and conservation practitioners. — Conserv. Biol. 3: 159–166, 2010.

    Google Scholar 

  • Dąbrowski P., Baczewska A.H., Pawluśkiewicz B. et al.: Prompt chlorophyll a fluorescence as a rapid tool for diagnostic changes in PSII structure inhibited by salt stress in Perennial ryegrass. — J. Photoch. Photobio. B. 157: 22–31, 2016.

    Article  Google Scholar 

  • Dąbrowski P., Kalaji M.H., Baczewska, A.H. et al.: Delayed chlorophyll a fluorescence, MR 820, and gas exchange changes in perennial ryegrass under salt stress. — J. Lumin. 183: 322–333, 2017.

    Article  Google Scholar 

  • Dąbrowski P., Pawluśkiewicz B. Baczewska A.H. et al: Chlorophyll a fluorescence of perennial ryegrass (Lolium perenne L.) varieties under long term exposure to shade. — Zemdirbyste. 3: 305–312, 2015.

    Article  Google Scholar 

  • Davies F.S., Flore J.A.: Flooding, gas exchange and hydraulic conductivity of highbush blueberry. — Physiol. Plantarum 67: 545–551, 1986.

    Article  Google Scholar 

  • Drew M.C.: Oxygen deficiency and root metabolism: injury and acclimation under hypoxia and anoxia. — Annu. Rev. Plant Phys. 48: 223–250, 1997.

    Article  CAS  Google Scholar 

  • Du K., Xu L., Wu H. et al.: Ecophysiological and morphological adaption to soil flooding of two poplar clones differing in flood-tolerance. — Flora 207: 96–106, 2012.

    Article  Google Scholar 

  • Erwin K.L.: Wetlands and global climate change: the role of wetland restoration in a changing world. — Wetl. Ecol. Manag. 17: 71–84, 2009.

    Article  Google Scholar 

  • Ewing K.: Tolerance of four wetland plant species to flooding and sediment deposition. — Environ. Exp. Bot. 36: 131–146, 1996.

    Article  Google Scholar 

  • Gadallah M.A.A. Effect of waterlogging and kinetin on the stability of leaf membranes, leaf osmotic potential, soluble carbon and nitrogen compounds and chlorophyll content of Ricinus plants. — Phyton 35: 199–208, 1995.

    CAS  Google Scholar 

  • Gibbs J., Greenway H.: Review: Mechanisms of anoxia tolerance in plants. I. Growth, survival and anaerobic catabolism. — Funct. Plant Biol. 30: 1–47, 2003.

    Article  CAS  Google Scholar 

  • Gimeno V., Syvertsen J.P., Simón I. et al.: Physiological and morphological responses to flooding with fresh or saline water in Jatropha curcas. — Environ. Exp. Bot. 78: 47–55, 2012.

    Article  CAS  Google Scholar 

  • Goltsev V.N., Kalaji, H.M., Paunov, M. et al.: Variable chlorophyll fluorescence and its use for assessing physiological condition of plant photosynthetic apparatus. — Russ. J. Plant Physl+ 63: 869–893, 2016.

    Article  CAS  Google Scholar 

  • Gomes A.S., Kozlowski T.T.: Responses of Melaleuca quinquenervia seedlings to flooding. — Physiol. Plantarum 49: 373–377, 1980.

    Article  Google Scholar 

  • Gopal B.: Future of wetlands in tropical and subtropical Asia, especially in the face of climate change. — Aquat. Sci. 75: 39–61, 2013.

    Article  Google Scholar 

  • Govindjee: Chlorophyll a fluorescence: a bit of basics and history. — In: Papageorgiou G.C., Govindjee (ed.): Chlorophyll a Fluorescence: A Signature of Photosynthesis. Pp. 2–42. Springer, Dordrecht 2004.

    Google Scholar 

  • Green B.R.: The chlorophyll-protein complexes of higher plant photosynthetic membranes. — Photosynth. Res. 15: 3–32, 1988.

    Article  CAS  PubMed  Google Scholar 

  • Grimshaw H M., Allen S.E., Parkinson J.A.: Nutrient elements. — In: Allen S.E., Davison W., Grimshaw H.M. et al. (ed.): Chemical Analysis of Ecological Materials. Pp. 81–159. Blackwell Sci. Publ., Oxford 1974.

    Google Scholar 

  • Harrington C.A.: Responses of red alder and black cottonwood seedlings to flooding. — Physiol. Plantarum 69: 35–48, 1987.

    Article  Google Scholar 

  • Hiscox J.D., Israelstam G.F.: A method for the extraction of chlorophyll from leaf tissue without maceration. — Can. J. Bot. 57: 1332–1334, 1979.

    Article  CAS  Google Scholar 

  • Hiwale S.: Jamun (Syzygium cuminii). — In: Hiwale S. (ed.): Sustainable Horticulture in Semiarid Dry Lands. Pp. 237–246. Springer, New Delhi 2015.

    Google Scholar 

  • Huang M.L., Deng X.P., Zhao Y.Z. et al.: Water and nutrient use efficiency in diploid, tetraploid and hexaploid wheats. — J. Integr. Plant Biol. 49: 706–715, 2007.

    Article  Google Scholar 

  • Insausti P., Gorjón S.: Floods affect physiological and growth variables of peach trees (Prunus persica (L.) Batsch), as well as the postharvest behavior of fruits. — Sci. Hortic. 152: 56–60, 2013.

    Article  Google Scholar 

  • Islam M.A., Macdonald S.E.: Ecophysiological adaptations of black spruce (Picea mariana) and tamarack (Larix laricina) seedlings to flooding. — Trees 18: 35–42, 2004.

    Article  Google Scholar 

  • Jackson M.B., Drew M.C.: Effects of flooding on growth and metabolism of herbaceous plants. — In: Kozlowski T (ed.): Flooding and Plant Growth. Pp. 47–128. Academic Press, New York 1984.

    Chapter  Google Scholar 

  • Jackson M.B.: Are plant hormones involved in root to shoot communication? — Adv. Bot. Res. 19: 103–187, 1993.

    Article  CAS  Google Scholar 

  • Janeczko A., Gruszka D., Pociecha E. et al.: Physiological and biochemical characterisation of watered and drought-stressed barley mutants in the HvDWARF gene encoding C6-oxidase involved in brassinosteroid biosynthesis. — Plant Physiol. Bioch. 99: 126–141, 2016.

    Article  CAS  Google Scholar 

  • Jing Y.X., Li G.L., Gu B.H. et al.: Leaf gas exchange, chlorophyll fluorescence and growth responses of Melaleuca alternifolia seedlings to flooding and subsequent recovery. — Photosynthetica 47: 595–601, 2009.

    Article  CAS  Google Scholar 

  • Joly C.A., Brandle R.: Fermentation and adenylate metabolism of Hedychium oronarium JG Koenig (Zingiberaceae) and Acorus calamus L.(Araceae) under hypoxia and anoxia. — Funct. Ecol. 9: 505–510, 1995.

    Article  Google Scholar 

  • Kalaji H.M., Jajoo A., Oukarroum A. et al.: Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions. — Acta Physiol. Plant. 38: 102–113, 2016.

    Article  Google Scholar 

  • Kalaji H.M., Schansker G., Ladle R.J. et al.: Frequently asked questions about in vivo chlorophyll fluorescence: practical issues. — Photosyn. Res. 122: 121–158, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kentula M.E.: Perspectives on setting success criteria for wetland restoration. — Ecol. Eng. 15: 199–209, 2000.

    Article  Google Scholar 

  • Kozlowski T., Pallardy S.: Acclimation and adaptive responses of woody plants to environmental stresses. — Bot. Rev. 68: 270–334, 2002.

    Article  Google Scholar 

  • Kozlowski T.T., Pallardy S.G.: Effect of flooding on water, carbohydrate, and mineral relations. — In: Kozlowski T.T. (ed.): Flooding and Plant Growth. Pp. 165–193. Academic Press, Orlando 1984.

    Chapter  Google Scholar 

  • Kozlowski T.T.: Plant responses to flooding of soil. — Bioscience 34: 162–167, 1984.

    Article  Google Scholar 

  • Kozlowski T.T.: Responses of woody plants to flooding and salinity. — Tree Physiol. Monogr. 1: 1–29, 1997.

    Google Scholar 

  • Lambers H.F., Chapin III S., Thijs L.P.: Photosynthesis, respiration and long-distance transport. — In: Lambers H.F., Chapin III S., Thijs L.P (ed.): Plant Physiological Ecology. Pp. 11–99. Springer, New York 2008.

    Chapter  Google Scholar 

  • Li C.X., Wei H., Geng Y.H. et al.: Effects of submergence on photosynthesis and growth of Pterocarya stenoptera (Chinese wingnut) seedlings in the recently-created Three Gorges Reservoir region of China. — Wetl. Ecol. Manage. 18: 485–494, 2010.

    Article  Google Scholar 

  • Liao C.T., Lin C.H.: Effect of flooding stress on photosynthetic activities of Momordica charantia. — Plant Physiol. Bioch. 32: 479–485, 1994.

    Google Scholar 

  • Liu Z., Dickmann D.I.: Responses of two hybrid poplar clones to flooding, drought, and nitrogen availability. I. Morphology and growth. — Can. J. Bot. 70: 2265–2270, 1992.

    Article  Google Scholar 

  • Long S.P., Bernacchi C.J.: Gas exchange measurements, what can they tell us about the underlying limitations to photosynthesis? Procedures and sources of error. — J. Exp. Bot. 54: 2393–2401, 2003.

    Article  CAS  PubMed  Google Scholar 

  • Malik A.I., Colmer T.D., Lambers H. et al.: Changes in physiological and morphological traits of roots and shoots of wheat in response to different depths of waterlogging. — Funct. Plant Biol. 28: 1121–1131, 2001.

    Article  Google Scholar 

  • Mathur V.B., Choudhury B.C., Sinha P.R. et al.: Ecological Monitoring in Keoldeo National Park and its Environs for Enhancing Management Effectiveness. Technical Report. 10. Pp. 1–10. United Nations Foundations, http://whc.unesco.org/uploads/activities/documents/activity-331-17.pdf, 2010.

    Google Scholar 

  • Maxwell K., Johnson G.N.: Chlorophyll fluorescence. — a practical guide. — J. Exp. Bot. 51: 659–668, 2000.

    Article  CAS  PubMed  Google Scholar 

  • Middleton B.A.: The flood pulse concept in wetland restoration. — In: Middleton B.A. (ed.): Flood Pulsing in Wetlands: Restoring the Natural Hydrological Balance. Pp. 1–10. John Wiley & Sons, New York 2002.

    Google Scholar 

  • Middleton B.A.: Vegetation status of the Keoladeo National Park, Bharatpur, Rajasthan, India (April 2009). US Geological Survey Science Investigation Report, 5193. Pp. 5193–5200. U.S. Geological Survey, Reston 2009.

    Google Scholar 

  • Mielke M.S., De Almeida A.A.F., Gomes F.P. et al.: Leaf gas exchange, chlorophyll fluorescence and growth responses of Genipa americana seedlings to soil flooding. — Environ. Exp. Bot. 50: 221–231, 2003.

    Article  CAS  Google Scholar 

  • Mielke M.S., Matos E.M., Couto V.B. et al.: Some photosynthetic and growth responses of Annona glabra L. seedlings to soil flooding. — Acta Bot. Bras. 19: 905–911, 2005.

    Article  Google Scholar 

  • Murchie E.H., Lawson T.: Chlorophyll fluorescence analysis: a guide to good practice and understanding some new applications. — J. Exp. Bot. 64: 3983–98, 2013.

    Article  CAS  PubMed  Google Scholar 

  • Naumann J.C., Young D.R., Anderson J.E.: Leaf chlorophyll fluorescence, reflectance, and physiological response to freshwater and saltwater flooding in the evergreen shrub, Myrica cerifera. — Environ. Exp. Bot. 63: 402–409, 2008.

    Article  CAS  Google Scholar 

  • Nema A.G., Khare A.K.: Effect of waterlogging on some forest plants. — J. Trop. Forestry 8: 187–188., 1992.

    Google Scholar 

  • Newsome R.D., Kozlowski T.T., Tang Z.C.: Response of Ulmus americana seedlings to flooding of soil. — Can. J. Bot. 60: 1688–1695, 1982.

    Article  Google Scholar 

  • Oliveira V.C., Joly C.A.: Flooding tolerance of Calophyllum brasiliense Camb. (Clusiaceae): Morphological, physiological and growth responses. — Trees 24: 185–193, 2010.

    Article  Google Scholar 

  • Panwar J., Tarafdar J.C.: Arbuscular mycorrhizal fungal dynamics under Mitragyna parvifolia (Roxb.) Korth. in Thar Desert. — Appl. Soil Ecol. 34: 200–208, 2006.

    Article  Google Scholar 

  • Papageorgiou G.C., Govindjee.: Photosystem II fluorescence: slow changes. — scaling from the past. — J. Photoch. Photobio. B. 104: 258–270, 2011.

    Article  CAS  Google Scholar 

  • Parolin P.: Morphological and drought and physiological adjustments in seedlings of Amazonian floodplain to waterlogging trees. — Oecologia 128: 326–335, 2001.

    Article  PubMed  Google Scholar 

  • Parry M.L., Canziani O.F., Palutikof J.P. et al. (ed.): Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Pp. 976. Cambridge University Press, Cambridge 2007.

    Google Scholar 

  • Percival G.C., Fraser G.A., Oxenham G.: Foliar salt tolerance of Acer genotypes using chlorophyll fluorescence. — J. Arboricult. 29: 61–65, 2003.

    Google Scholar 

  • Perkins L.B., Johnson D.W., Nowak R.S.: Plant-induced changes in soil nutrient dynamics by native and invasive grass species. — Plant Soil 345: 365–374, 2011.

    Article  CAS  Google Scholar 

  • Pezeshki S.R.: Differences in patterns of photosynthetic CO2 responses to hypoxia in flood-tolerant and flood-sensitive tree species. — Photosynthetica 28: 423–430, 1993.

    Google Scholar 

  • Pezeshki S.R.: Plant response to flooding. — In: Wilkinson R.E (ed.): Plant Environment Interactions. Pp. 289–321. Marcel Dekker, New York 1994.

    Google Scholar 

  • Pezeshki S.R.: Wetland plant responses to soil flooding. — Environ. Exp. Bot. 46: 299–312, 2001.

    Article  Google Scholar 

  • Poot P., Lambers H.: Growth responses to waterlogging and drainage of woody Hakea (Proteaceae) seedlings, originating from contrasting habitats in south-western Australia. — Plant Soil 253: 57–70, 2003.

    Article  CAS  Google Scholar 

  • Pucciariello C., Voesenek L.A., Perata P. et al.: Plant responses to flooding. — Front. Plant Sci. 5: 226, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sairam R.K., Dharmar K., Chinnusamy V. et al.: Waterlogginginduced increase in sugar mobilization, fermentation, and related gene expression in the roots of mung bean (Vigna radiata). — J. Plant Physiol. 166: 602–616, 2009.

    Article  CAS  PubMed  Google Scholar 

  • Schaffer B., Andersen P.C., Ploetz R.C.: Responses of fruit crops to flooding. — In: Janick J. (ed.): Horticultural Reviews, Vol. 13. Pp. 257–313. John Wiley & Sons, New York 1992.

    Google Scholar 

  • Simova-Stoilova L., Demirevska K., Kingston-Smith A. et al.: Involvement of the leaf antioxidant system in the response to soil flooding in two Trifolium genotypes differing in their tolerance to waterlogging. — Plant Sci. 183: 43–49, 2012.

    Article  CAS  PubMed  Google Scholar 

  • Smethurst C.F., Shabala S:. Screening methods for waterlogging tolerance in lucerne: comparative analysis of waterlogging effects on chlorophyll fluorescence, photosynthesis, biomass and chlorophyll content. — Funct. Plant Biol. 30: 335–343, 2003.

    Article  Google Scholar 

  • Stolzy L.H., Sojka R.E.: Effects of flooding on plant diseases. — In: Kozlowski T.T. (ed.): Flooding and Plant Growth. Pp. 221–264. Academic Press, New York. — London 1984.

    Chapter  Google Scholar 

  • Tang Z.C., Kozlowski T.T.: Some physiological and growth response of Betula papyrifera seedlings to flooding. — Physiol. Plantarum 55: 415–420, 1982.

    Article  Google Scholar 

  • Thomson C.J., Atwell B.J., Greenway H.: Response of wheat seedlings to low O2 concentrations in nutrient solution: II. K+/Na+ selectivity of root tissue of different age. — J. Exp. Bot. 40: 993–999, 1989.

    Article  Google Scholar 

  • van Kleunen M.: Conservation physiology of plants. — Conserv. Physiol. 2: 1–2, 2014.

    Google Scholar 

  • Verma K.K., Singh M., Verma C.L.: Developing a mathematical model for variation of physiological responses of Jatropha curcas leaves depending on leaf positions under soil flooding. — Acta Physiol. Plant. 34: 1435–1443, 2012.

    Article  Google Scholar 

  • von Caemmerer S., Farquhar G.D.: Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves. — Planta 153: 376–387, 1981.

    Article  Google Scholar 

  • Webb J.A., Fletcher R.A.: Paclobutrazol protects wheat seedlings from injury due to waterlogging. — Plant Growth Regul. 18: 201–206, 1996.

    Article  CAS  Google Scholar 

  • Yamamoto F, Sakata T, Terazawa K.: Physiological, morphological and anatomical response of Fraxinus mandshurica seedlings to flooding. — Tree Physiol. 15: 713–719, 1995.

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Li C, Li J. et al.: Growth dynamics of Chinese wingnut (Pterocarya stenoptera) seedlings and its effects on soil chemical properties under simulated water change in the Three Gorges Reservoir Region of Yangtze River. — Environ. Sci. Pollut. Res. Int. 20: 7112–7123, 2013.

    Article  PubMed  Google Scholar 

  • Yetisir H., Çeliskan M.E., Soylu S. et al.: Some physiological and growth responses of watermelon [Citrullus lanatus (Thunb.) Matsum. and Nakai] grafted onto Lagenaria siceraria to flooding. — Environ. Exp. Bot. 58: 1–8, 2006.

    Article  Google Scholar 

  • Yordanova R.Y., Popova L.P.: Photosynthetic response of barley plants to soil flooding. — Photosynthetica 39: 515–520, 2001.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Bidalia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bidalia, A., Okram, Z., Hanief, M. et al. Assessment of tolerances in Mitragyna parvifolia (Roxb.) Korth. and Syzygium cumini Keels. seedlings to waterlogging. Photosynthetica 56, 707–717 (2018). https://doi.org/10.1007/s11099-017-0724-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11099-017-0724-1

Additional key words

Navigation