Skip to main content
Log in

Investigating role of Triton X-100 in ameliorating deleterious effects of anthracene in wheat plants

  • Original paper
  • Published:
Photosynthetica

Abstract

This study focused on the deleterious effect of anthracene (ANT) and role of a surfactant, Triton (TX-100), in recovery from inhibitory effect of ANT. Fast chlorophyll (Chl) fluorescence measurements were performed in wheat plants. Results revealed that maximum quantum yield of PSII, area over the fluorescence curve, performance index (PI), and reaction centre density was negatively affected by ANT treatment. The effects on PSII quantum efficiency, reaction centre density, absorption, and trapping were partially recovered by TX-100. PSII heterogeneity in terms of PSII antenna heterogeneity, corresponding to PSII α, β, and γ centres, and reducing side, corresponding to QB-reducing and QB-nonreducing centres, were also investigated. The damage caused by ANT to PSII antenna heterogeneity was recovered almost by 100% owing to TX-100.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ABS:

absorption

ANT:

anthracene

Chl:

chlorophyll

CS:

cross section

DCMU:

3-(3,4-dichlorophenyl)-1,1- dimethyl urea

DI0:

dissipation

DM:

dry mass

ET0:

electron transport

F0 :

initial fluorescence

Fm :

maximum fluorescence

FM:

fresh mass

Fv :

variable fluorescence

OEC:

oxygen-evolving complex

OJ, JI, IP:

phases of Chl a fluorescence induction curve

PAH:

polycyclic aromatic hydrocarbons

PEA :

plant efficiency analyser

PQ:

plastoquinone

RC:

reaction center

ROS:

reactive oxygen species

TR0 :

trapping.

References

  • Aksmann A., Tukaj Z.: Intact anthracene inhibits photosynthesis in algal cells: a fluorescence induction study on Chlamydomonas reinhardtii cw92 strain. — Chemosphere 74: 26–32, 2008.

    Article  CAS  PubMed  Google Scholar 

  • Boonchan S., Britz M.L., Stanley G.A.: Surfactant-enhanced biodegradation of high molecular weight polycyclic aromatic hydrocarbons by Stenotrophomonas maltophilia. — Biotechnol. Bioeng. 59: 482–494, 1998.

    Article  CAS  PubMed  Google Scholar 

  • Chen L.S., Cheng L.: Photosystem 2 is more tolerant to high temperature in apple (Malus domestica Borkh.) leaves than in fruit peel. — Photosynthetica 47: 112–120, 2009.

    Article  CAS  Google Scholar 

  • Christen D., Schonmann S., Jermini M. et al.: Characterization and early detection of grapevine (Vitis vinifera) stress responses to esca disease by in situ chlorophyll fluorescence and comparison with drought stress. — Environ. Exp. Bot. 60: 504–514, 2007.

    Article  CAS  Google Scholar 

  • Dianne J., Luning P., Parmely H.: Solubilization of polycyclic aromatic hydrocarbon mixtures in micellar non-ionic surfactant solutions. — Water Res. 36: 3463, 2002.

    Article  Google Scholar 

  • Force L., Critchley C., Van Rensen J.J.S.: New fluorescence parameters for monitoring photosynthesis in plants. — Photosynth. Res. 78: 17–33, 2003.

    Article  CAS  PubMed  Google Scholar 

  • Grimberg S.J., Stringfellow W.T., Aitken M.D.: Quantifying the biodegradation of phenanthrene by Pseudomonas stutzeri P16 in the presence of a nonionic surfactant. — Appl. Environ. Microbiol. 62: 2387–2392, 1996.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hsu B.D., Lee Y.S., Jang Y.R.: A method for analysis of fluorescence induction curve from DCMU-poisoned chloroplasts. — Biochim. Biophys. Acta 975: 44–49, 1989.

    Article  CAS  Google Scholar 

  • Huang X.D., Zeiler L.F., Dixon D.G. et al.: Photoinduced toxicity of PAHs to the foliar regions of Brassica napus (Canola) and Cucumbis sativus (Cucumber) in simulated solar radiation. — Ecotoxicol. Environ. Safe. 35: 191–197, 1996.

    Article  Google Scholar 

  • Jin D., Jiang X., Jing X. et al.: Effect of concentration, head group, and structure of surfactants on the degradation of phenanthrene. — J. Hazard. Mater. 144: 215–221, 2007.

    Article  CAS  PubMed  Google Scholar 

  • Kalaji H.M., Jajoo A., Oukarroum A. et al.: Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions. — Acta Physiol. Plant. 38: 102–112, 2016.

    Article  Google Scholar 

  • Kim I.S., Park J.S., Kim K.W.: Enhanced biodegradation of polycyclic aromatic hydrocarbons using non-ionic surfactants in soil slurry. — Appl. Geochem. 16: 1419–1428, 2001.

    Article  CAS  Google Scholar 

  • Kummerová M., Barták M., Dubová J. et al.: Inhibitory effect of fluoranthene on photosynthetic processes in lichens detected by chlorophyll fluorescence. — Ecotoxicology 15: 121–131, 2006.

    Article  PubMed  Google Scholar 

  • Laha S., Luthy R.G.: Effects of nonionic surfactants on the solubilization and mineralization of phenanthrene in soil-water systems. — Biotechnol. Bioeng. 40: 1367–1380, 1992.

    Article  CAS  PubMed  Google Scholar 

  • Li J.L., Chen B.H.: Effect of non-ionic surfactants on biodegradation of phenanthrene by a marine bacteria of Neptunomonas naphathovarans. — J. Hazard. Mater. 162: 66–73, 2009.

    Article  CAS  PubMed  Google Scholar 

  • Liu H., Weisman D., Ye Y.B. et al.: An oxidative stress response to polycyclic aromatic hydrocarbon exposure is rapid and complex in Arabidopsis thaliana. — Plant Sci. 176: 357–382, 2009.

    Google Scholar 

  • Mathur S., Jajoo A., Mehta P. et al.: Analysis of elevated temperature induced inhibition of Photosystem II using chlorophyll a fluorescence induction kinetics in wheat leaves. — Plant Biol. 13: 1–6, 2011a.

    Article  CAS  PubMed  Google Scholar 

  • Mathur S., Allakhverdiev S.I., Jajoo A.: Analysis of the temperature stress on the dynamic of antenna size and reducing side heterogeneity of photosystem II in wheat leaves (Triticum aestivum). — BBA-Bioenergetics 1807: 22–29, 2011b.

    Article  CAS  PubMed  Google Scholar 

  • Mehta P., Jajoo A., Mathur S. et al.: Chlorophyll a fluorescence study revealing effects of high salt stress on photosystem II in wheat leaves. — Plant Physiol. Bioch. 48: 16–20, 2010.

    Article  CAS  Google Scholar 

  • Oguntimehin I., Eissa F., Sakugawa H.: Negative effects of fluoranthene on the ecophysiology of tomato plants (Lycopersicon esculentum Mill) fluoranthene mists negatively affected tomato plants. — Chemosphere 78: 877–884, 2010.

    Article  CAS  PubMed  Google Scholar 

  • Oguntimehin I., Sakugawa H.: Interactive effects of simultaneous ozone and fluoranthene fumigation on the eco-physiological status of the evergreen conifer, Japanese red pine (Pinus densiflora Sieb et Zucc.). — Ecotoxicology 18: 100–109, 2009.

    Article  CAS  PubMed  Google Scholar 

  • Oguntimehin I., Nakatani N., Sakugawa H.: Phytotoxicities of fluoranthene and phenanthrene deposited on needle surfaces of the evergreen conifer, Japanese red pine (Pinus densiflora Sieb. et Zucc.). — Environ. Pollut. 154: 264–271, 2008.

    Article  CAS  PubMed  Google Scholar 

  • Oukarroum A., El Madidi, S.E., Schansker G. et al.: Probing the responses of barley cultivars (Hordeum vulgare L.) by chlorophyll a fluorescence OLKJIP under drought stress and re-watering. — Environ. Exp. Bot. 60: 438–446, 2007.

    Article  CAS  Google Scholar 

  • Prak D.J.L., Pritchard P.H.: Solubilization of polycyclic aromatic hydrocarbon mixtures in micellar non-ionic surfactant solutions. — Water Res. 36: 3463–3472, 2002.

    Article  CAS  PubMed  Google Scholar 

  • Strasser R.J., Tsimilli-Michael M., Srivastava A.: Analysis of the chlorophyll a fluorescence transient. — In: Papageorgiou G.C. (ed): Chlorophyll a Fluorescence: A Signature of Photosynthesis, Advances in Photosynthesis and Respiration. Pp. 321–362. Springer, Dordrecht 2004.

    Book  Google Scholar 

  • Strauss A.J., Krüger G.H.J., Strasser R.J. et al.: Ranking of dark chilling tolerance in soybean genotypes probed by the chlorophyll a fluorescence transient O-J-I-P. — Environ. Exp. Bot. 56: 147–157, 2006.

    Article  CAS  Google Scholar 

  • Tomar R.S., Sharma A., Jajoo A.: Assessment of phytotoxicity of anthracene in soybean (Glycine max.) with a quick method of chlorophyll fluorescence. — Plant Biol. 17: 870–876, 2015.

    Article  CAS  PubMed  Google Scholar 

  • Tomar R.S., Jajoo A.: Photomodified fluoranthene exerts more harmful effects as compared to intact fluoranthene by inhibiting growth and photosynthetic processes. — Ecotox. Environ. Safe. 122: 31–36, 2015.

    Article  CAS  Google Scholar 

  • Tomar R.S., Jajoo A.: A quick investigation of the detrimental effects of environmental pollutant polycyclic aromatic hydrocarbon fluoranthene on the photosynthetic efficiency of wheat (Triticum aestivum). — Ecotoxicology 22: 1313–1318, 2013a.

    Article  PubMed  Google Scholar 

  • Tomar R.S., Jajoo A.: Alteration in PSII heterogeneity under the influence of polycyclic aromatic hydrocarbon (fluoranthene) in wheat leaves (Triticum aestivum). — Plant Sci. 209: 58–63, 2013b.

    Article  Google Scholar 

  • Tomar R.S., Mathur S., Allakhverdiev S.I. et al.: Changes in PS II heterogeneity in response to osmotic and ionic stress in wheat leaves (Triticum aestivum). — J. Bioenerg. Biomembr. 44: 411–419, 2012.

    Article  Google Scholar 

  • Tongra T., Mehta P., Mathur S. et al.: Computational analysis of fluorescence induction curves in intact spinach leaves treated at different pH. — Biosystems 103: 158–163, 2011.

    Article  CAS  PubMed  Google Scholar 

  • Toth S.Z, Schansker G., Strasser R.J.: In intact leaves, the maximum fluorescence level (Fm) is independent of the redox state of the plastoquinone pool: a DCMU-inhibition study. — BBA-Bioenergetics 1708: 275–282, 2005.

    Article  CAS  PubMed  Google Scholar 

  • Tsimilli-Michael M., Strasser R.J.: In vivo assessment of stress impact on plants vitality: Applications in detecting and evaluating the beneficial role of mycorrization on host plants. — In: Varma A. (ed.): Mycorriza. Pp. 679–703, Springer Verlag, Berlin, Heidelberg 2008.

  • USEPA (Environmental Protection Agency) Procedures for the Derivation of Equilibrium Partitioning Sediment Benchmarks (ESBs) for the Protection of Benthic Organisms: PAH Mixtures. EPA-600-R-02-013. Office of Research and Development, Washington, DC, 20460 (draft), 2002.

  • Volkering F., Breure A.M., van Andel J.G. et al.: Influence of nonionic surfactants on bioavailability and biodegradation of polycyclic aromatic hydrocarbons. — Appl. Environ. Microbiol. 61: 1699–1705, 1995.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wheatley A.D., Sadhra S.: Polycyclic aromatic hydrocarbons in solid residues from waste incineration. — Chemosphere 55: 743–749, 2004.

    Article  CAS  PubMed  Google Scholar 

  • Yamane Y., Shikanai T., Kashino Y. et al.: Reduction of QA in the dark: another cause of fluorescence Fo increases by high temperature in higher plants. — Photosynth. Res. 63: 23–34, 2000.

    Article  CAS  PubMed  Google Scholar 

  • Yusuf M.A., Kumar D., Rajwanshi R. et al.: Overexpression of gamma-tocopherol methyl transferase gene in transgenic Brassica juncea plants alleviates abiotic stress: physiological and chlorophyll fluorescence measurements. — Biochim. Biophys. Acta 1797: 1428–1438, 2010.

    Article  CAS  PubMed  Google Scholar 

  • Zhu L., Feng S.: Synergistic solubilization of polycyclic aromatic hydrocarbons by mixed anionic-nonionic surfactants. — Chemosphere 53: 459–467, 2003.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Jajoo.

Additional information

Acknowledgements: C. Sharma thanks Council of Science and Industrial Research (CSIR), India, for CSIR-Junior Research Fellowship (09/301(0126)/2014-EMRI). R.S. Tomar thanks Department of Science and Technology (DST), India for the Inspire Fellowship under Assured Opportunity for Research Careers (AORC) [IF-120412]. A. Jajoo thanks to Department of Science and Technology (DST), India for the Project (DST/RUS/RFBR/P-173). S. Mathur thanks University Grant Commission, (UGC), India for Post Doctoral Fellowship for Women (PDFWM-2014-15-GEMAD-23945).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, C., Mathur, S., Tomar, R.S. et al. Investigating role of Triton X-100 in ameliorating deleterious effects of anthracene in wheat plants. Photosynthetica 56, 652–659 (2018). https://doi.org/10.1007/s11099-017-0715-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11099-017-0715-2

Additional key words

Navigation