Skip to main content
Log in

Effects of excess cadmium in soil on JIP-test parameters, hydrogen peroxide content and antioxidant activity in two maize inbreds and their hybrid

  • Original paper
  • Published:
Photosynthetica

Abstract

Excessive cadmium (Cd) content in soil leads to a number of phytotoxic effects and challenges agricultural production. Aim of this study was to investigate different responses of two maize inbreds and their hybrid to an elevated Cd content in soil by measuring photosynthetic and biochemical activity and to identify a Cd tolerance mechanism. Antioxidant statusrelated parameters varied significantly between inbreds and treatments. Dry mass increased in both inbreds, but remained unchanged in hybrid. After the Cd treatment, parameters of chlorophyll a fluorescence varied between inbreds and hybrid performance was similar to inbred B84. We concluded that inbred B84 is Cd-sensitive compared to Os6-2, which did not appear to be negatively affected by Cd treatment at this growth stage studied. We suspect that due to a dilution effect in the hybrid, there was no or very weak Cd stress detected by biochemical parameters, although stress was detected by chlorophyll a fluorescence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ABS/RC:

absorption per active reaction centre

APX:

ascorbate peroxidase

Car:

carotenoids

CAT:

catalase

Chl:

chlorophyll

CK:

control

DIo/RC:

dissipation per active reaction centre

DM:

dry mass

FM:

fresh mass

ET:

electron transport

ETo/ABS:

quantum yield for electron transport

ETo/RC:

electron transport per active reaction centre

ETo/TRo :

efficiency/probability for electron transport

ETo (TRo-ETo):

electron transport beyond xxxx

F0 :

minimal fluorescence yield of the dark-adapted state

Fm :

maximal fluorescence yield of the dark-adapted state

Fv :

variable fluorescence

Fv/Fm :

maximal quantum yield of PSII photochemistry

Mo:

approximated initial slope (ms–1) of the fluorescence transient normalised on the maximal variable fluorescence Fv

PIABS :

performance index (potential) for energy conservation from exciton to the reduction of intersystem electron acceptors

POD:

peroxidase

RC/ABS:

density of reaction centres on chlorophyll a basis

RC/CSo :

density of reaction centres per excited cross section

ROS:

reactive oxygen species

Sm :

normalised total complementary area above the transient curve

TBARS:

thiobarbituric acid-reactive substances

tmax :

time (in ms) to reach the maximal fluorescence intensity Fm

TRo/ABS:

maximum quantum yield for primary photochemistry

TRo/DIo :

flux ratio trapping per dissipation

TRo/RC:

trapping per active reaction centre

VJ :

relative variable fluorescence at J step.

References

  • Aebi H.: Catalase in vitro. — Methods Enzymol. 105: 121–126, 1984.

    Article  CAS  PubMed  Google Scholar 

  • Aghaz M., Bandehagh A.: Phytotoxic effects of cadmium on photosynthesis pigments in dill (Anethum graveolens). — Int. J. Farm. Alli. Sci. 2: 544–548, 2013.

    Google Scholar 

  • Anjum S.A., Tanveer M., Hussain S. et al.: Cadmium toxicity in maize (Zea mays L.): consequences on antioxidative systems, reactive oxygen species and cadmium accumulation. — Environ. Sci. Pollut. R. 22: 17022–17030, 2015.

    Article  CAS  Google Scholar 

  • Asada K.: Ascorbate peroxidase. — a hydrogen peroxide-scavenging enzyme in plants. — Physiol. Plantarum 85: 235–241, 1992.

    Article  CAS  Google Scholar 

  • Begović L., Mlilnarić S., Antunović Dunić J. et al.: Response of Lemna minor L. to short-term cobalt exposure: The effect on photosynthetic electron transport chain and induction of oxidative damage. — Aquat. Toxicol. 175: 117–126, 2016.

    Article  PubMed  Google Scholar 

  • Brkić I., Šimić D., Zdunić Z. et al.: Combining abilities of cornbelt inbred lines of maize for mineral content in grain. — Maydica 48: 293–297, 2003.

    Google Scholar 

  • Burzyński M., Żurek A.: Effects of copper and cadmium on photosynthesis in cucumber cotyledons. — Photosynthetica 45: 239–244, 2007.

    Article  Google Scholar 

  • Cakmak I., Štrbac D., Marchner H.: Activities of hydrogen peroxide-scavenging enzymes in germinating wheat seeds. — J. Exp. Bot. 44: 127–132, 1993.

    Article  CAS  Google Scholar 

  • Chaneva G., Parvanova P., Tzvetkova N., Uzunova A.: Photosynthetic response of maize plants against cadmium and paraquat impact. — Water Air Soil Pollut. 208: 287–293, 2010.

    Article  CAS  Google Scholar 

  • Chaoui A., Mazhoudi S., Habib Ghorbal M., El Ferjani E.: Cadmium and zinc induction of lipid peroxidation and effects on antioxidant enzyme activities in bean (Phaseolus vulgaris L.). — Plant Sci. 127: 139–147, 1997.

    Article  CAS  Google Scholar 

  • Chaudhary S., Sharma Y.K.: Interactive studies of potassium and copper with cadmium on seed germination and early seedling growth in maize (Zea mays L.). — J. Environ. Biol. 30: 427–432, 2009.

    CAS  PubMed  Google Scholar 

  • Chien S.H., Menon R.G.: Dilution effect of plant biomass on plant cadmium concentration ad induced by application of phosphate fertilizers. — In: Rodriguez-Barrueco C. (ed.): Fertilizers and Environment. — Development in Plant and Soil Sciences. Pp. 437–442. Kluwer Academic Publishers, Dordrecht 1996.

    Google Scholar 

  • Cho U.H., Seo N.H.: Oxidative stress in Arabidopsis thaliana exposed to cadmium is due to hydrogen peroxide accumulation. — Plant Sci. 168: 113–120, 2005.

    Article  CAS  Google Scholar 

  • Christen D., Schönmann S., Jermini M. et al.: Characterization and early detection of grapevine (Vitis vinifera) stress responses to esca disease by in situ chlorophyll fluorescence and comparison with drought stress. — Environ. Exp. Bot. 60: 504–514, 2007.

    Article  CAS  Google Scholar 

  • Ci D., Jiang D., Dai T. et al.: Effects of cadmium on plant growth and physiological traits in contrast wheat recombinant inbred lines differing in cadmium tolerance. — Chemosphere 77: 1620–1625, 2009.

    Article  CAS  PubMed  Google Scholar 

  • Da Silva A.J., Nascimento C.W.A., Gouveia-Neto A.S., da Silva-Jr E.A.: LED induced chlorophyll fluorescence spectral analysis for the early detection and monitoring of cadmium toxicity in maize plants. — Water Air Soil Pollut. 223: 3527–3533, 2012.

    Article  CAS  Google Scholar 

  • Das P., Samantaray S., Rout R.: Studies on cadmium toxicity in plants: a review. — Environ. Pollut. 98: 29–36, 1998.

    Article  Google Scholar 

  • De Gara L., Paciolla C., De Tullio M. et al.: Ascorbate-dependent hydrogen peroxide detoxification and ascorbate regeneration during germination of a highly productive maize hybrid: Evidence of an improved detoxification mechanism against reactive oxygen species. — Physiol. Plantarum 109: 7–13, 2000.

    Article  Google Scholar 

  • Di Cagno R., Guidi L., Stefani A., Soldatini G.F.: Effects of cadmium on growth of Heliantus annus seedlings: physiological aspects. — New Phytol. 144: 65–71, 1999.

    Article  Google Scholar 

  • Di Toppi L.S., Gabbrielli R.: Response to cadmium in higher plants. — Environ. Exp. Bot. 41: 105–130, 1999.

    Article  Google Scholar 

  • Drążkiewicz M., Tukendorf A., Baszyński T.: Age dependent response of maize leaf segments to cadmium treatment: Effect on chlorophyll fluorescence and phytochelatin accumulation. — J. Plant Physiol. 160: 247–254, 2003.

    Article  PubMed  Google Scholar 

  • Ekmekçi Y., Tanyolaç D., Ayhan B.: Effects of cadmium on antioxidant enzyme and photosynthetic activities in leaves of two maize cultivars. — J. Plant Physiol. 165: 600–611, 2008

    Article  PubMed  Google Scholar 

  • Florijn P.J., van Beusichem M.L.: Uptake and distribution of cadmium in maize inbred lines. — Plant Soil 150: 25–32, 1993.

    Article  CAS  Google Scholar 

  • Franić M., Sorić R., Lončarić Z. et al.: Genotype variations in maize on cadmium contaminated soil. — In: Jug I., Đurđević B. (ed.): Proceedings of 6th Conference Agriculture in Nature and Environment Protection. Pp. 113–117. Glas Slavonije d.d., Osijek 2013.

  • Gallego S.M., Pena L.B., Barcia R.A. et al.: Unraveling cadmium toxicity and tolerance in plants: insight into regulatory mechanisms. — Environ. Exp. Bot. 83: 33–46, 2012.

    Article  CAS  Google Scholar 

  • Grant C.A., Buckley W.T., Bailey L.D., Selles F.: Cadmium accumulation in crops. — Can. J. Plant Sci. 78: 1–17, 1998.

    Article  CAS  Google Scholar 

  • Havaux M., Strasser R.J.: Dynamics of electron transfer within and between PS II reaction center complexes indicated by the light-saturation curve of in vivo variable chlorophyll fluorescence emission. — Photosynth. Res. 31: 149–156, 1992.

    Article  CAS  PubMed  Google Scholar 

  • Jiang H.-X., Chen L.-S., Zheng J.-G. et al.: Aluminium-induced effects on photosystem II photochemistry in citrus leaves assessed by chlorophyll a fluorescence transient. — Tree Physiol. 28: 1863–1871.

  • Krall J.P., Edwards G.E.: Relationship between photosystem II activity and CO2 fixation in leaves. — Physiol. Plantarum 86: 180–187, 1992.

    Article  CAS  Google Scholar 

  • Kalaji H.M.; Loboda T.: Photosystem II of barley seedlings under cadmium and lead stress. — Plant Soil Environ. 53: 511–516, 2007.

    Article  CAS  Google Scholar 

  • Kalaji H M, Oukarroum A, Alexandrov V et al.: Identification of nutrient deficiency in maize and tomato plants by in vivo chlorophyll a fluorescence measurements. — Plant. Physiol. Bioch. 81: 16–25, 2014.

    Article  CAS  Google Scholar 

  • Kalaji H.M., Schansker G., Breštić M. et al.: Frequently asked questions about chlorophyll fluorescence, the sequel. — Photosynth. Res.: doi: 10.1007/s11120-016-0318-y, 2016.

    Google Scholar 

  • Krantev A., Yordanova R., Janda T. et al.: Treatment with salicylic acid decreases the effect of cadmium on photosynthesis in maize plants. — J. Plant Physiol. 165: 920–931, 2008.

    Article  CAS  PubMed  Google Scholar 

  • Krinsky N.: Antioxidant functions of carotenoids. — Free Radical Bio. Med. 7: 617–635, 1989.

    Article  CAS  Google Scholar 

  • Küpper H., Küpper F., Spiller M.: Environmental relevance of heavy metal-substituted chlorophylls using the example of water plants. — J. Exp. Bot. 47: 259–266, 1996.

    Article  Google Scholar 

  • Larsson E.H., Bornman J.F., Asp H.: Influence of UV-B radiation and Cd2+ on chlorophyll fluorescence, growth and nutrient content in Brassica napus. — J. Exp. Bot. 49: 1031–1039, 1998

    Article  CAS  Google Scholar 

  • Lee E.A., Tracy W. F.: Modern maize breeding. — In: Bennetzen J., Hake, S. (ed.): Handbook of Maize: Genetics and Genomics. Pp. 141–160. Springer, New York 2009.

    Chapter  Google Scholar 

  • Lichtenthaler H.K., Kuhn G., Prenzel U. et al.: Adaptation of chloroplast-ultrastructure and of chlorophyll-protein levels to high-light and low-light growth conditions. — Z. Naturforsch. 37: 464–475, 1982.

    Google Scholar 

  • Lichtenthaler H.K.: Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. — Methods Enzymol. 148: 350–382, 1987.

    Article  CAS  Google Scholar 

  • Mallick N., Mohn F.H.: Use of chlorophyll fluorescence in metal-stress research: a case study with green microalga Scenedesmus. — Ecotox. Environ. Safe. 55: 64–69, 2003.

    Article  CAS  Google Scholar 

  • Nakano Y., Asada K.: Hydrogen peroxide is scavenged by ascorbate. — specific peroxidase in spinach chloroplasts. — Plant Cell. Physiol. 22: 867–880, 1981.

    CAS  Google Scholar 

  • Pagliano C., Raviolo M., Dalla Vecchia F. et al.: Evidence for PSII donor-side damage and photoinhibition induced by cadmium treatment on rice (Oryza sativa L.). — J. Photoch. Photobio. B 84: 70–78, 2006.

    Article  CAS  Google Scholar 

  • Procházková D., Sairam R.K., Srivastava G.C., Singh D.V.: Oxidative stress and antioxidant activity as the basis of senescence in maize leaves. — Plant Sci. 161: 765–771, 2001.

    Article  Google Scholar 

  • R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3–900051-07-0, URL http://www.Rproject. org/, 2012.

    Google Scholar 

  • Ralph P.J., Burchett M.D.: Photosynthetic response of Halophila ovalis to heavy metal stress. — Environ. Pollut. 103: 91–101, 1998.

    Article  CAS  Google Scholar 

  • Rodríguez-Serrano M., Romero-Puertas M.C., Pazmiño D.M. et al.: Cellular response of pea plants to cadmium toxicity: cross talk between reactive oxygen species, nitric oxide, and calcium. — Plant Physiol. 150: 229–243, 2009.

    Article  PubMed  PubMed Central  Google Scholar 

  • Romero-Puertas M.C., Palm, J.M., Gómez M. et al.: Cadmium causes the oxidative modification of proteins in pea plants. — Plant Cell Environ. 25: 677–686, 2002.

    Article  CAS  Google Scholar 

  • Sandalio L.M., Dalurzo H.C., Gómez M. et al.: Cadmiuminduced changes in the growth and oxidative metabolism of pea plants. — J. Exp. Bot. 52: 2115–2126, 2001.

    Article  CAS  PubMed  Google Scholar 

  • Schützendübel A., Polle A.: Plant responses to abiotic stresses: heavy metal induced oxidative stress and protection by mycorrhisation. — J. Exp. Bot. 53: 1351–1365, 2002.

    PubMed  Google Scholar 

  • Siegel B.Z., Galston A.W.: The isoperoxidases of Pisum sativum. — Plant Physiol. 42: 221–226, 1967.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Šimić D., Mladenović Drinić S., Zdunić Z. et al.: Quantitative trait loci for biofortification in maize grain. — J. Hered. 103: 47–54, 2012

    Article  PubMed  Google Scholar 

  • Sorić R., Ledenčan T., Zdunić Z. et al.: Quantitative trait loci for metal accumulation in maize leaf. — Maydica 56: 323–329, 2011.

    Google Scholar 

  • Sorić R., Lončarić Z., Kovačević V. et al.: A major gene for leaf cadmium accumulation in maize (Zea mays L.). — In: The Proceedings of the International Plant Nutrition Colloquium XVI. http://escholarship. org/uc/item/1q48v6cf. UC Davis, 2009.

    Google Scholar 

  • STAR, version 2.0.1. Biometrics and Breeding Informatics, PBGB Division, International Rice Research Institute. Los Baños, Laguna 2014.

    Google Scholar 

  • Stirbet A, Govindjee: On the relation between the Kautsky effect (chlorophyll a fluorescence induction) and photosystem II: Basics and applications of the OJIP fluorescence transient. — J. Photoch. Photobio. B. 104: 236–257, 2011.

    Article  CAS  Google Scholar 

  • Strasser R.J., Srivastava A., Govindjee: Polyphasic chlorophyll a fluorescence transient in plants and cyanobacteria. — Photochem. Photobiol. 61: 32–42, 1995.

    Article  CAS  Google Scholar 

  • Strasser R.J., Srivastava A., Tsimilli-Michael M.: Analysis of chlorophyll a fluorescence transient. — In: Papageorgiou G.C., Govindjee (ed.): Advances in Photosynthesis and Respiration. Pp. 321–362. Springer, Dodrecht 2004.

  • Strasser R.J., Srivastava A., Tsimilli-Michael M.: The fluorescent transient as a tool to characterize and screen photosynthetic samples. — In: Yunus M., Pathre, U., Mohanty P. (ed.): Probing Photosynthesis: Mechanisms, Regulation and Adaptation. Pp. 445–483. Taylor and Francis, London 2000.

  • Strasser R.J., Tsimilli-Michael M., Qiang S., Goltsev V.: Simultaneous in vivo recording of prompt and delayed fluorescence and 820-nm reflection changes during drying and after rehydration of the resurrection plant Haberlea rhodopensis. — Biochim. Biophys. Acta 1797: 1313–1326, 2010.

    Article  CAS  PubMed  Google Scholar 

  • Tuba Z., Saxena D.K., Srivastava K., Kalaji M.H.: Chlorophyll a fluorescence measurements for validating the tolerant bryophytes for heavy metal (Pb) biomapping. — Curr. Sci. 98: 1505–1508, 2010.

    CAS  Google Scholar 

  • Turnau K., Anielska T., Ryszka P. et al. Establishment of arbuscular mycorrhizal plants originating from xerothermic grasslands on heavy metal rich industrial wastes. — new solution for waste revegetation. — Plant Soil 305: 267–280, 2008.

    CAS  Google Scholar 

  • Velikova V., Yordanov I., Edreva A.: Oxidative stress and some antioxidant systems in acid-rain treated bean plants. Protective role of exogenous polyamines. — Plant Sci. 151: 59–66, 2000

    Article  CAS  Google Scholar 

  • Verbruggen N., Hermans C., Schat H.: Mechanisms to cope with arsenic or cadmium excess in plants. — Curr. Opin. Plant Biol. 12: 364–372, 2009.

    Article  CAS  PubMed  Google Scholar 

  • Verma S., Dubey R.S.: Leads toxicity induces lipid peroxidation and alters the activities of antioxidant enzxmes in growing rice plants. — Plant Sci. 164: 645–655, 2003.

    Article  CAS  Google Scholar 

  • Weigel H.J.: Inhibition of photosynthetic reactions of isolated intact chloroplasts by cadmium. — J. Plant Physiol. 119: 179–189, 1985.

    Article  CAS  Google Scholar 

  • Zhang Z., Jin F., Wang C.: Differences between Pb and Cd accumulation in 19 elite maize inbred lines and application prospects. — J. Biomed. Biotechnol. 2012: 271485, 2012.

    PubMed  PubMed Central  Google Scholar 

  • Zhou W., Qiu B.: Effects of cadmium hyperaccumulation on physiological characteristics of Sedum alfredii Hance (Crassulaceae). — Plant Sci. 169: 737–745, 2005.

    Article  CAS  Google Scholar 

  • Żurek G., Rybka K., Pogrzeba M. et al.: Chlorophyll a fluorescence in evaluation of the effect of heavy metal soil contamination on perennial grasses. — PLOS ONE 9: e91475, 2014.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Franić.

Additional information

Acknowledgements: This research was funded by the Croatian Science Foundation (project No. 5707: „Genetics and physiology of multiple stress tolerance in maize“).

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Franić, M., Galić, V., Mazur, M. et al. Effects of excess cadmium in soil on JIP-test parameters, hydrogen peroxide content and antioxidant activity in two maize inbreds and their hybrid. Photosynthetica 56, 660–669 (2018). https://doi.org/10.1007/s11099-017-0710-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11099-017-0710-7

Additional key words

Navigation