Skip to main content
Log in

Combined effects of light and temperature on growth, photosynthesis, and pigment content in the mat-forming cyanobacterium Geitlerinema amphibium

  • Published:
Photosynthetica

Abstract

Geitlerinema amphibium (BA-13), mat-forming cyanobacterium from the southern Baltic Sea, was grown at three irradiances [5, 65, and 125 μmol(photon) m−2 s−1] and three temperatures (15, 22.5, and 30°C). To determine the effect of the investigated factors and their interaction on culture concentration, pigment content, and photosynthetic parameters of cyanobacterium, factorial experiments and two-way analysis of variance (ANOVA) were carried out. Both chlorophyll (Chl) a and phycobilins (PB) were influenced by the irradiance and temperature, but stronger effect was noted in the case of the former one. Chl a and PB concentration per 100 μm of filament dropped above 4-fold with the increasing irradiance. The ratios between individual carotenoids [β-carotene, zeaxanthin, and myxoxanthophyll (Myx)] and Chl a increased significantly with an increase in the irradiance. The greatest fluctuations were observed in the ratio of Myx to Chl a (above 10-fold). Thus, Myx was suggested as the main photoprotective carotenoid in G. amphibium. Based on photosynthetic light response (PI) curves, two mechanisms of photoacclimation in G. amphibium were recognized: a change of photosynthetic units (PSU) number and a change of PSU size. These two mechanisms constituted the base of significant changes in photosynthetic rate and its parameters, such as the compensation point (P C), the initial slope of photosynthetic curve (α), saturation irradiance (E K), maximal photosynthetic rate (P max), and dark respiration rate (R D). The greatest changes were observed in P C values (about 15-fold within the range of the factors tested). Studied parameters showed a wide range of changes, which might indicate G. amphibium ability to acclimatize well to irradiance and temperature, and indirectly might explain the successful growth of cyanobacterium in dynamically changing environmental conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ANOVA :

analysis of variance

AP:

allophycocyanin

CCBA:

Culture Collection of Baltic Algae

Chl:

chlorophyll

DM:

dry mass

E K :

saturation irradiance

Myx:

myxoxanthophyll

N:

number of filament units

OD:

optical density

P C :

compensation point

PB:

phycobilins

PC:

phycocyanin

PE:

phycoerythrin

PI:

photosynthetic light response

P max :

maximum photosynthetic rate

P N :

net photosynthetic rate

PSII:

photosystem II

PSU:

photosynthetic units

R D :

dark respiration rate

RP-HPLC:

reversed-phase high performance liquid chromatography

α:

initial slope of photosynthetic curve

References

  • Allakhverdiev, S.I., Kreslavski, V.D., Klimov, V.V. et al.: Heat stress: an overview of molecular responses in photosynthesis. — Photosynth. Res. 98: 541–550, 2008.

    Article  PubMed  CAS  Google Scholar 

  • Bidigare, R.R., Schofield, O., Prézelin, B.B.: Influence of zeaxanthin on quantum yield of photosynthesis of Synechococcus clone WH7803 (DC2). — Mar. Ecol. Prog. Ser. 56: 177–188, 1989.

    Article  CAS  Google Scholar 

  • Brzeziński, J., Stachowski, R.: [Application of variance analysis to experimental psychological investigations]. — PWN, Warszawa 1981. [In Polish.]

    Google Scholar 

  • Davison, I.R.: Environmental effects on algal photosynthesis: temperature. — J. Phycol. 27: 2–8, 1991.

    Article  Google Scholar 

  • Defew, E.C., Perkins, R.G., Paterson, D.M.: The influence of light and temperature interactions on a natural estuarine microphytobenthic assemblage. — Biofilms 1: 21–30, 2004.

    Article  Google Scholar 

  • Dring, M.J.: The Biology of Marine Plants. — Cambridge Univ. Press, Cambridge 1998.

    Google Scholar 

  • Falkowski, P.G., Dubinsky, Z., Wyman, K.: Growth-irradiance relationships in phytoplankton. — Limnol. Oceanogr. 30: 311–321, 1985.

    Article  CAS  Google Scholar 

  • Fisher, R.A., Yates, F.: Statistical Tables for Biological, Agricultural and Medical Research. — 6th Ed. Olivier and Boyd, Edinburgh 1963.

    Google Scholar 

  • Fisher, T., Minnaard, J., Dubinsky, Z.: Photoacclimation in the marine alga Nannochloropsis sp. (Eustigmatophyte): a kinetic study. — J. Plankton Res. 18: 1797–1818, 1996.

    Article  Google Scholar 

  • Fogg, G.E., Thake, B.: Algal Cultures and Phytoplankton Ecology. — Univ. Wisconsin Press, Madison and Milwaukee 1987.

    Google Scholar 

  • Henley, W.J.: Measurement and interpretation of photosynthetic light-response curves in algae in the context of photoinhibition and diel changes. — J. Phycol. 29: 729–739, 1993.

    Article  Google Scholar 

  • Hirschberg, J., Chamovitz, D.: Carotenoids in cyanobacteria. — In: Bryant, D.A. (ed.): The Molecular Biology of Cyanobacteria. Pp. 559–579. Kluwer Academic Publishers, Dordrecht — Boston — Lancaster 1994.

    Chapter  Google Scholar 

  • Ibelings, B.W.: Changes in photosynthesis in response to combined irradiance and temperature stress in cyanobacterial surface waterblooms. — J. Phycol. 32: 549–557, 1996.

    Article  Google Scholar 

  • Jensen, S., Knutsen, G.: Influence of light and temperature on photoinhibition of photosynthesis in Spirulina platensis. — J. Appl. Phycol. 5: 495–504, 1993.

    Article  Google Scholar 

  • Jerlov, N.G.: Marine Optics. — Elsevier, Amsterdam 1976.

    Google Scholar 

  • Jodłowska, S., Latała, A.: Simultaneous separation of chlorophylls and carotenoids by RP-HPLC in some algae and cyanobacteria from the Southern Baltic. — Oceanol. Hydrobiol. Stud. 32: 81–89, 2003.

    Google Scholar 

  • Kana, T.M., Glibert, P.M., Goericke, R., Welschmeyer, N.A.: Zeaxanthin and β-carotene in Synechococcus WH7803 respond differently to irradiance. — Limnol. Oceanogr. 33: 1623–1627, 1988.

    Article  CAS  Google Scholar 

  • Kana, T.M., Glibert, P.M.: Effect of irradiances up to 2000 μE m−2 s−1 on marine Synechococcus WH7803. II. Photosynthetic responses and mechanisms. — Deep-Sea Res. 34: 497–516, 1987.

    Article  CAS  Google Scholar 

  • Kononen, K.: Dynamics of the toxic cyanobacterial blooms in the Baltic Sea. — Finn. Mar. Res. 261: 3–36, 1992.

    Google Scholar 

  • Lakatos, M., Bilger, W., Büdel, B.: Carotenoid composition of terrestrial Cyanobacteria: response to natural light conditions in open rock habitats in Venezuela. — Eur. J. Phycol. 36: 367–375, 2001.

    Article  Google Scholar 

  • Latała, A., Jodłowska, S., Pniewski, F.: Culture Collection of Baltic Algae (CCBA) and characteristic of some strains by factorial experiment approach. — Arch. Hydrobiol. 165, Algological Studies 122: 137–154, 2006.

    Article  Google Scholar 

  • Latała, A., Misiewicz, S.: Effects of light, temperature and salinity on the growth and chlorophyll-a content of Baltic cyanobacterium Phormidium sp. — Arch. Hydrobiol. 136, Algological Studies 100: 157–180, 2000.

    Google Scholar 

  • Latała, A.: Photosynthesis and respiration of plants from the Gulf of Gdańsk. — Acta Ichthyol. Piscat. 21: 85–100, 1991.

    Google Scholar 

  • MacIntyre, H.L., Kana, T.M., Anning, T., Geider, R.J.: Photoacclimation of photosynthesis irradiance response curves and photosynthetic pigments in microalgae and cyanobacteria. — J. Phycol. 38: 17–38, 2002.

    Article  Google Scholar 

  • Millie, D.F., Hersh, C.M., Dionigi, C.P.: Simazine-induced inhibition in photoacclimated populations of Anabaena circinalis (Cyanophyta). — J. Phycol. 28: 19–26, 1992.

    Article  CAS  Google Scholar 

  • Millie, D.F., Ingram, D.A., Dionigi, C.P.: Pigment and photosynthetic responses of Oscillatoria agardhii (Cyanophyta) to photon flux density and spectral quality. — J. Phycol. 26: 660–666, 1990.

    Article  Google Scholar 

  • Mouget, J.-L., Tremblin, G., Morant-Manceau, A. et al.: Longterm photoacclimation of Haslea ostrearia (Bacillariophyta): effect of irradiance on growth rates, pigment content and photosynthesis. — Eur. J. Phycol. 34: 109–115, 1999.

    Google Scholar 

  • Oktaba, W.: [Methods of mathematical statistic in experiments]. — PWN, Warszawa 1986. [In Polish.]

    Google Scholar 

  • Pearl, H.W., Tucker, J., Bland, P.T.: Carotenoid enhancement and its role in maintaining blue-green algal (Microcystis aeruginosa) surface blooms. — Limnol. Oceanogr. 28: 847–857, 1983.

    Article  Google Scholar 

  • Platt, T., Jassby, A.D.: The relationship between photosynthesis and light for natural assemblages of coastal marine phytoplankton. — J. Phycol. 12: 421–430, 1976.

    Google Scholar 

  • Platt. T, Gallegos, C.L., Harrison, W.G.: Photoinhibition of photosynthesis in natural assemblages of marine phytoplankton. — J. Mar. Res. 38: 687–701, 1980.

    Google Scholar 

  • Prézelin, B.B.: Light reactions in photosynthesis. — In: Platt, T. (ed.): Physiological Bases of Phytoplankton Ecology. Pp. 1–43. Can. Bull. Fish. Aquat. Sci., no. 210, Ottawa 1981.

    Google Scholar 

  • Prézelin, B.B and Matlick, H.A.: Time-course of photoadaptation in the photosynthesis-irradiance relationship of a dinoflagellate exhibiting photosynthesis periodicity. — Mar. Biol. 5: 85–96, 1980.

    Article  Google Scholar 

  • Rabinowitch, E.I.: Photosynthesis and Related Processes. Vol. II, part 1. — Interscience Publishers, New York 1951.

    Google Scholar 

  • Ramus, J.: The capture and transduction of light energy. — In: Lobban, C.S., Wynne, M.J. (ed.): The Biology of Seaweeds. Pp. 458–492. Blackwell Scientific, Oxford 1981.

    Google Scholar 

  • Raps, S., Wyman, K., Siegelman, H.W., Falkowski, P.G.: Adaptation of the cyanobacterium Microcystis aeruginosa to light intensity. — Plant Physiol. 72: 829–832, 1983.

    Article  PubMed  CAS  Google Scholar 

  • Rau, W.: Functions of carotenoids other than in photosynthesis. — In: Goodwin, T.W. (ed.): Plant Pigments. Pp. 231–255. Academic Press, London 1988.

    Google Scholar 

  • Richardson, K., Beardall, J., Raven, J.A.: Adaptation of unicellular algae to irradiance: an analysis of strategies. — New Phytol. 93: 157–191, 1983.

    Article  Google Scholar 

  • Roos, J.C., Vincent, W.F.: Temperature dependence of UV radiation effects on Antarctic cyanobacteria. — J. Phycol. 34: 118–125, 1998.

    Article  Google Scholar 

  • Skulberg, O.M.: Oscillatorialean cyanoprokaryotes and their application for algal culture technology. — Arch. Hydrobiol. 105, Algol. Stud. 75: 265–278, 1994.

    Google Scholar 

  • Snedecor, G.W., Cochran, W.G.: Statistical Methods. — Iowa State University Press, Ames 1980.

    Google Scholar 

  • Stanier, R.Y., Kunisawa, R., Mandel, M., Cohen-Bazire, G.: Purification and properties of unicellular blue-green algae (order Chroococcales). — Bacteriol. Rev. 35: 171–205, 1971.

    PubMed  CAS  Google Scholar 

  • Steiger, S., Schäfer, L., Sandmann, G.: High-light-dependent upregulation of carotenoids and their antioxidative properties in the cyanobacterium Synechocystis PCC 6803. — J. Photoch. Photobiol. B. 52: 14–18, 1999.

    Article  CAS  Google Scholar 

  • Stewart, D.E., Farmer, F.H.: Extraction, identification, and quantitation of phycobiliprotein pigments from phototrophic plankton. — Limnol. Oceanogr. 29: 392–397, 1984.

    Article  CAS  Google Scholar 

  • Takahashi, S., Badger, M.R.: Photoprotection in plants: A new light on photosystem II damage. — Trends Plant Sci. 16: 53–60, 2011.

    Article  PubMed  CAS  Google Scholar 

  • Takahashi, S., Murata, N.: How do environmental stresses accelerate photoinhibition? — Trends Plant Sci. 13: 178–182, 2008.

    Article  PubMed  CAS  Google Scholar 

  • Tandeau de Marsac, N.: Chromatic adaptation by cyanobacteria. — In: Bogorad, L., Vasil, I.K. (ed.): Cell Culture and Somatic Cell Genetics of Plants. Pp. 417–446. Academic Press, San Diego — New York — Boston — London — Syney — Tokyo — Toronto 1991.

    Google Scholar 

  • Tandeau de Marsac, N., Houmard, J.: Complementary chromatic adaptation: physiological conditions and action spectra. — In: Packer, L., Glazer, A.N. (ed.): Methods in Enzymology. Pp. 318–328. Academic Press, New York 1988.

    Google Scholar 

  • Tang, E.P.Y., Tremblay, R., Vincent, W.F.: Cyanobacterial dominance of polar freshwater ecosystems: are high-latitude mat-formers adapted to low temperature? — J. Phycol. 33: 171–181, 1997.

    Article  Google Scholar 

  • Wilhelm, C.: The biochemistry and physiology of light harvesting processes in chlorophyll-band c-containing algae. — Plant Physiol. Biochem. 28: 293–306, 1993.

    Google Scholar 

  • Witkowski, A.: Microbial mat with an incomplete vertical structure, from brackish-water environment, the Puck Bay, Poland, a possible analog of an “advanced anaerobic ecosystem”? — Orig. Life Evol. Biosph. 16: 337–338, 1986.

    Article  Google Scholar 

  • Zurzycki, J., Starzecki, W.: Volumetric methods. — In: Šesták, Z., Čatský, J., Jarvis, P.G. (ed.): Plant Photosynthetic Production Manual of Methods. Pp. 257–275. Dr. W. Junk N.V. Publishers, The Hague 1971.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Jodłowska.

Additional information

Acknowledgements: This study was supported by research grants from the Council for Science — Poland (6 PO4F 117 21, 3 PO4F 027 23) and by the University of Gdańsk (BW/1320-5-0170-9, BW/1320-5-0075-2).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jodłowska, S., Latała, A. Combined effects of light and temperature on growth, photosynthesis, and pigment content in the mat-forming cyanobacterium Geitlerinema amphibium . Photosynthetica 51, 202–214 (2013). https://doi.org/10.1007/s11099-013-0019-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11099-013-0019-0

Additional key words

Navigation