Skip to main content

Advertisement

Log in

Effect of bicarbonate treatment on photosynthetic assimilation of inorganic carbon in two plant species of Moraceae

  • Published:
Photosynthetica

Abstract

Excessive levels of bicarbonate adversely affect the growth and metabolism of plants. Broussonetia papyrifera (L.) Vent. and Morus alba L., belonging to family Moraceae, possess the favorable characteristics of rapid growth and adaptability to adverse environments. We examined the response of these two plant species to bicarbonate stress in terms of photosynthetic assimilation of inorganic carbon. They were exposed to 10 mM sodium bicarbonate in the culture solution for 20 days. The photosynthetic response was determined by measuring the net photosynthetic rate of the leaf, water-use efficiency, and chlorophyll fluorescence on days 10 and 20. The bicarbonate-use capacity of the plants was studied by measuring the carbonic anhydrase activity and the compositions of the stable carbon and hydrogen isotopes. The photosynthetic response to high concentration of bicarbonate varied with plant species and treatment durations. High concentrations of bicarbonate decreased the photosynthetic assimilation of inorganic carbon in the two plant species to half that in the control plants on day 10. Bicarbonate treatment did not cause any damage to the reaction centers of photosystem II in Morus alba; it, however, caused a decline in the quantum efficiency of photosystem II in B. papyrifera on day 20. Moreover, B. papyrifera had a greater bicarbonate-use capacity than M. alba because carbonic anhydrase converted bicarbonate to CO2 and H2O to a greater extent in B. papyrifera. This study showed that the effect of bicarbonate on photosynthetic carbon metabolism in plants was dual. Therefore, the concentration of bicarbonate in the soil should first be considered during afforestation and ecological restoration in karst areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BT:

bicarbonate treatment

BUC:

bicarbonate-use capacity

CA:

carbonic anhydrase

Chl:

chlorophyll

E :

transpiration rate

Fm :

maximum chlorophyll fluorescence

Fm′:

maximum fluorescence in the light-adapted state

Fv :

variable fluorescence

Fv′:

variable fluorescence in the light-adapted state

Fs :

fluorescence yield in the steady state

F0 :

minimum chlorophyll fluorescence

Fv/Fm :

maximum quantum yield of PSII

FM:

fresh mass

g s :

stomatal conductance

PDB:

Pee Dee Belemnite

P N :

net photosynthetic rate

P N′:

corrected photosynthetic rate

PPFD:

photosynthetic photon flux density

PSII:

photosystem II

WA:

Wilbur and Anderson

WUE:

water-use efficiency

δ13C:

ratio of stable carbon isotopes

δD :

ratio of stable hydrogen isotopes

Φp :

photochemical efficiency of open PSII

References

  • Alhendawi, R.A., Römheld, V., Kirkby, E.A., Marschner, H.: Influence of increasing bicarbonate concentrations on plant growth, organic acid accumulation in roots and iron uptake by barley, sorghum, and maize. — J. Plant Nutr. 20: 1731–1753, 1997.

    Article  CAS  Google Scholar 

  • Badger, M.R., Price, G.D.: The role of carbonic anhydrase in photosynthesis. — Annu. Rev. Plant Physiol. Plant mol. Biol. 45: 369–392, 1994.

    Article  CAS  Google Scholar 

  • Baker, N.R.: A possible role for photosystem II in environmental perturbations of photosynthesis. — Plant Physiol. 81: 563–570, 1991.

    Article  CAS  Google Scholar 

  • Barathi, P., Sundar, D., Reddy, A.R.: Changes in mulberry leaf metabolism in response to water stress. — Biol. Plant. 44: 83–87, 2001.

    Article  CAS  Google Scholar 

  • Bertamini, M., Nedunchezhian, N., Borghi, B.: Effect of iron deficiency induced changes on photosynthetic pigments, ribulose-1,5-bisphosphate carboxylase, and photosystem activities in field grown grapevine (Vitis vinifera L. cv. Pinot noir) leaves. — Photosynthetica 39: 59–65, 2001.

    Article  CAS  Google Scholar 

  • Brown, J.W., Wadleigh, C.H.: Influence of sodium bicarbonate on the growth and chlorosis of garden beets. — Bot. Gaz. 116: 201–209, 1955.

    Article  CAS  Google Scholar 

  • Chaltanya, K.V., Sundar, D., Reddy, A.R.: Mulberry leaf metabolism under high temperature stress. — Biol. Plant. 44: 379–384, 2001.

    Article  Google Scholar 

  • Clausen, J., Beckmann, K., Junge, W., Messinger, J.: Evidence that bicarbonate is not the substrate in photosynthetic oxygen evolution. — Plant Physiol. 139: 1444–1450, 2005.

    Article  PubMed  CAS  Google Scholar 

  • Garg, B.K., Garg, O.P.: Influence of sodium bicarbonate on growth, nutrient uptake and metabolism of Pea. — Ann. Arid Zone 25: 69–72, 1986.

    Google Scholar 

  • Guo, D.P., Guo, Y.P., Zhao, J.P. et al.: Photosynthetic rate and chlorophyll fluorescence in leaves of stem mustard (Brassica juncea var. tsatsai) after turnip mosaic virus infection. — Plant Sci. 168: 57–63, 2005.

    Article  CAS  Google Scholar 

  • Hoagland, D.R., Arnon, D.I.: The water-culture method for growing plants without soil. — California Agric. Exp. Stat. 347: 1–32, 1950.

    Google Scholar 

  • Klimov, V.V., Allakhverdiev, S.I., Nishiyama, Y., Khorobrykh, A.A., Murata, N.: Stabilization of the oxygen-evolving complex of photosystem II by bicarbonate and glycinebetaine in thylakoid and subthylakoid preparations. — Funct. Plant Biol. 30: 797–803, 2003.

    Article  CAS  Google Scholar 

  • Klimov, V.V., Baranov, S.V.: Bicarbonate requirement for the water-oxidizing complex of photosystem II. — BBABioenergetics 1503: 187–196, 2001.

    Article  CAS  Google Scholar 

  • Kumar, N., Kumar, S.: Differential activation of ribulose-1,5-bisphosphate carboxylase/oxygenase in non-radiolabelled versus radiolabelled sodium bicarbonate. — Curr. Sci. 80: 333–334, 2001.

    CAS  Google Scholar 

  • Kumar, S.G., Lakshmi, A., Madhusudhan, K.V., Ramanjulu, S., Sudhakar, C.: Photosynthesis parameters in two cultivars of mulberry differing in salt tolerance. — Photosynthetica 36: 611–616, 1999.

    Article  Google Scholar 

  • Lee, J.A., Woolhouse, H.W.: A comparative study of bicarbonate inhibition of root growth in calcicole and calcifuges grasses. — New Phytol. 68: 1–11, 1969.

    Article  CAS  Google Scholar 

  • Mooney, H.A.: The carbon balance of plants. — Annu. Rev. Ecol. Syst. 3: 315–346, 1972.

    Article  CAS  Google Scholar 

  • Motomura, H., Ueno, O., Kagawa, A., Yukawa, T.: Carbon isotope ratios and the variation in the diurnal pattern of malate accumulation in aerial roots of CAM species of Phalaenopsis (Orchidaceae). — Photosynthetica 46: 531–536, 2008.

    Article  CAS  Google Scholar 

  • Nichols, J., Booth, R.K., Jackson, S.T., Pendall, E.G., Huang, Y.S.: Differential hydrogen isotopic ratios of Sphagnum and vascular plant biomarkers in ombrotrophic peatlands as a quantitative proxy for precipitation-evaporation balance. — Geochim. Cosmochim. Acta 74: 1407–1416, 2010.

    Article  CAS  Google Scholar 

  • Nikolic, M., Römheld, V., Merkt, N.: Effect of bicarbonate on uptake and translocation of 59Fe in two grapevine rootstocks differing in their resistance to Fe deficiency chlorosis. — Vitis 39: 145–149, 2000.

    Google Scholar 

  • Panda, D., Sharma, S.G., Sarkar, R.K.: Chlorophyll fluorescence parameters, CO2 photosynthetic rate and regeneration capacity as a result of complete submergence and subsequent re-emergence in rice (Oryza sativa L.). — Aquat. Bot. 88: 127–133, 2008.

    Article  CAS  Google Scholar 

  • Roháček, K., Barták, M.: Technique of the modulated chlorophyll fluorescence: Basic concepts, useful parameters, and some applications. — Photosynthetica 37: 339–363, 1999.

    Article  Google Scholar 

  • Sasaki, H., Hirose, T., Watanabe, Y., Ohsugi, R.: Carbonic anhydrase activity and CO2 -transfer resistance in Zn-deficient rice leaves. — Plant Physiol. 118: 929–934, 1998.

    Article  PubMed  CAS  Google Scholar 

  • Schwender, J., Goffman, F., Ohlrogge, J.B., Shachar-Hill, Y.: Rubisco without the Calvin cycle improves the carbon efficiency of developing green seeds. — Nature 432: 779–782, 2004.

    Article  PubMed  CAS  Google Scholar 

  • Srivastava, N.K., Misra, A., Sharma, S.: Effect of Zn deficiency on net photosynthetic rate, 14C partitioning, and oil accumulation in leaves of peppermint. — Photosynthetica 33: 71–79, 1997.

    Article  CAS  Google Scholar 

  • Stemler, A. J.: The bicarbonate effect, oxygen evolution, and the shadow of Otto Warburg. — Photosynth. Res. 73: 177–183, 2002.

    Article  PubMed  CAS  Google Scholar 

  • Tcherkez, G., Mahe, A., Gauthier, P., Mauve, C., Gout, E., Bligny, R., Cornic, G., Hodges, M.: In folio respiratory fluxomics revealed by 13C isotopic labeling and H/D isotope effects highlight the noncyclic nature of the tricarboxylic acid “cycle” in illuminated leaves. — Plant Physiol. 151: 620–630, 2009.

    Article  PubMed  CAS  Google Scholar 

  • Van Rensen, J.J.S.: Role of bicarbonate at the acceptor side of photosyntem II. — Photosynth. Res. 73: 185–192, 2002.

    Article  PubMed  Google Scholar 

  • Walters, M.B., Kruger, E.L., Reich, P.B.: Relative growth rate in relation to physiological and morphological traits for northern hardwood tree seedlings: species, light environment and ontogenetic considerations. — Oecologia 96: 219–231, 1993.

    Article  Google Scholar 

  • Wilbur, K.M., Anderson, N.G.: Electrometric and colorimetric determination of carbonic anhydrase. — J. Biol. Chem. 176: 147–154, 1948.

    PubMed  CAS  Google Scholar 

  • Woolhouse, H.W.: Comparative physiological studies on Deschampsia flexuosa, Holcus mollis, Arrhenatherum elatius and Koeleria gracilis in relation to growth on calcareous soils. — New Phytol. 65: 22–31, 1966.

    Article  Google Scholar 

  • Wu, Y.Y., Liu, C.Q., Li, P.P., Wang, J.Z., Xing, D., Wang, B.L.: Photosynthetic characteristics involved in adaptability to Karst soil and alien invasion of paper mulberry (Broussonetia papyrifera (L.) Vent.) in comparison with mulberry (Morus alba L.). — Photosynthetica 47: 155–160, 2009.

    Article  CAS  Google Scholar 

  • Wu, Y.Y., Shi, Q.Q., Wang, K., Li, P.P., Xing, D.K., Zhu, Y.L., Song, Y.J.: [An electrochemical approach coupled with Sb microelectrode to determine the activities of carbonic anhydrase in the plant leaves.] — In: Zeng, D. (ed.): Future Intelligent Information Systems, LNEE 86 Pp. 87–94. Springer-Verlag, Berlin — Heidelberg 2011a. [In Chin.]

    Chapter  Google Scholar 

  • Wu, Y.Y., Xing, D.K., Liu, Y.: [The characteristics of bicarbonate used by plants.] — Earth Environ. 39: 273–277, 2011b. [In Chin.]

    CAS  Google Scholar 

  • Wu, Y.Y., Zhao, K., Xing, D.K.: Does carbonic anhydrase affect the fractionation of stable carbon isotope. — Geochim. Cosmochim. Acta 74: A1148–A1148, 2010.

    Google Scholar 

  • Yan, J.H., Li J.M., Ye Q., Li K.: Concentrations and exports of solutes from surface runoff in Houzhai Karst Basin southwest China. — Chemical Geology 304/305: 1–9, 2012.

    Article  Google Scholar 

  • Yang, X., Römheld, V., Marschenr, H.: Effect of bicarbonate and root zone temperature on uptake of Zn, Fe, Mn and Cu by different rice cultivars (Oryza sativa L.) grown in calcareous soil. — Plant Soil 155/156: 441–444, 1993.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Y. Wu.

Additional information

Acknowledgements: This study was supported by the “One Hundred Talents Program of The Chinese Academy of Sciences” and the National Natural Science Foundation of China (Grant No. 31070365).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, Y.Y., Xing, D.K. Effect of bicarbonate treatment on photosynthetic assimilation of inorganic carbon in two plant species of Moraceae. Photosynthetica 50, 587–594 (2012). https://doi.org/10.1007/s11099-012-0065-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11099-012-0065-z

Additional key words

Navigation