Skip to main content
Log in

Carbon isotope ratios and the variation in the diurnal pattern of malate accumulation in aerial roots of CAM species of Phalaenopsis (Orchidaceae)

  • Original Papers
  • Published:
Photosynthetica

Abstract

We investigated the carbon isotope ratios and the diurnal pattern of malate accumulation in leaves and aerial roots of eight species of Phalaenopsis grown in greenhouses. The leaves of all the species showed carbon isotope ratios and the diurnal patterns of malate content typical of CAM plants. However, the aerial roots exhibited a large variation in the diurnal pattern of malate content among species and even among plants within the same species, although carbon isotope ratios were always CAM-like values. Some aerial roots showed the typical diurnal pattern of CAM, but others maintained high or low malate contents during a day without fluctuation. In order to characterize more strictly the nature of the malate variation in the aerial roots, we further investigated a possible variation of the diurnal pattern of malate among different aerial roots within an individual for Phalaenopsis amabilis and P. cornu-cervi. The diurnal pattern of malate content was varied even among different aerial roots within the same plant. Thus the photosynthetic carbon metabolism in aerial roots of orchids is fairly complex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AR:

aerial root

CAM:

crassulacean acid metabolism

FM:

fresh mass

SR:

subterranean root

References

  • Avadhani, P.N., Goh, A., Rae, N., Arditti, J.: Carbon fixation in orchids.-In: Arditti, J. (ed.): Orchid Biology: Reviews and Perspective II. Pp. 173–193. Cornell University Press, New York 1982.

    Google Scholar 

  • Aschan, G., Pfanz, H.: Non-foliar photosynthesis — a strategy of additional carbon acquisition.-Flora 198: 81–97, 2003.

    Google Scholar 

  • Benzing, D.H., Friedman, W.E., Peterson, G., Renfrow, A.: Shootlessness, velamentous roots, and the pre-eminence of Orchidaceae in the epiphytic biotope.-Amer. J. Bot. 70: 121–133, 1983.

    Article  Google Scholar 

  • Benzing, D.H., Ott, D.W.: Vegetative reduction in epiphytic Bromeliaceae and Orchidaceae: Its origin and significance.-Biotropica 13: 131–140, 1981.

    Article  Google Scholar 

  • Cockburn, W., Goh, C.J., Avadhani, N.: Photosynthetic carbon assimilation in a shootless orchid, Chiloschista usneoides (Don) Ldl.-Plant Physiol. 77: 83–86, 1985.

    PubMed  CAS  Google Scholar 

  • Dycus, A.M., Knudson, L.: The role of the velamen of the aerial roots of orchids.-Bot. Gaz. 119: 78–87, 1957.

    Article  Google Scholar 

  • Ehleringer, J.R., Monson, R.K.: Evolutionary and ecological aspects of photosynthetic pathway variation.-Annu. Rev. Ecol. Syst. 24: 411–439, 1993.

    Article  Google Scholar 

  • Endo, M., Ikushima, I.: Diurnal rhythm and characteristics of photosynthesis and respiration in the leaf and root of a Phalaenopsis plant.-Plant Cell Physiol. 30: 43–47, 1989.

    CAS  Google Scholar 

  • Erickson, L.C.: Respiration and photosynthesis in Cattleya roots.-Amer. Orchid Soc. Bull. 26: 401–402, 1957.

    CAS  Google Scholar 

  • Goh, C.J., Arditti, J., Avadhani, P.N.: Carbon fixation in orchid aerial roots.-New Phytol. 95: 367–374, 1983.

    Article  CAS  Google Scholar 

  • Hew, C.S., Ng, Y.W., Wong, S.C., Yeoh, H.H., Ho, K.K.: Carbon dioxide fixation in orchid aerial roots.-Physiol. Plant. 60: 154–158, 1984.

    Article  CAS  Google Scholar 

  • Ho, K., Yeoh, H.-H., Hew, C.-S.: The presence of photosynthetic machinery in aerial roots of leafy orchids.-Plant Cell Physiol. 24: 1317–1321, 1983.

    CAS  Google Scholar 

  • Kawamitsu, Y., Naka, M., Nakayama, H., Sekizuka, F.: [Effects of elevated CO2 on crassulacean acid metabolism in Phalaenopsis.]-Sci. Bul. Coll. Agr. Univ. Ryukyus 42: 23–32, 1995. [In Jap.]

    CAS  Google Scholar 

  • Keeley, J.E., Rundel, P.W.: Evolution of CAM and C4 carbon-concentrating mechanisms.-Int. J. Plant Sci. 164: S55–S77, 2003.

    Article  CAS  Google Scholar 

  • Kluge, M., Brulfert, J., Rauh, W., Ravelomanana, D., Ziegler, H.: Ecophysiological studies on the vegetation of Madagascar: A δ13C values and δD survey for incidence and plasticity of crassulacean acid metabolism (CAM) among orchids from montane forests and succulents from the xerophytica thorn-bush.-Isot. Environ. Health Stud. 31: 191–210, 1995.

    Article  CAS  Google Scholar 

  • Kluge, M., Ting, I.P.: Crassulacean Acid Metabolism.-Springer-Verlag, Berlin-Heidelberg-New York 1978.

    Google Scholar 

  • Lee, H.S.J., Griffiths, H.: Induction and repression of CAM in Sedum telephium L. in response to photoperiod and water stress.-J. exp. Bot. 38: 834–841, 1987.

    Article  Google Scholar 

  • Lüttge, U.: Ecophysiology of Crassulacean Acid Metabolism (CAM).-Ann. Bot. 93: 629–652, 2004.

    Article  PubMed  CAS  Google Scholar 

  • Möllering, H.: Determination of malate dehydrogenase and glutamate-oxaloacetate transaminase.-In: Bergmeyer, H.U. (ed.): Methods of Enzymatic Analysis. Vol. 3. Pp. 1589–1593. Academic Press, New York 1974.

    Google Scholar 

  • Motomura, H., Yukawa, Y., Ueno, O., Kagawa, A.: The occurrence of crassulacean acid metabolism in Cymbidium (Orchidaceae) and its ecological and evolutionary implications.-J. Plant Res. 121: 163–177, 2008.

    Article  PubMed  CAS  Google Scholar 

  • Osmond, C.B.: Crassulacean acid metabolism — curiosity in context.-Annu. Rev. Plant Physiol. 29: 379–414, 1978.

    Article  CAS  Google Scholar 

  • Ota, K., Morioka, K., Yamamoto, Y.: [Effects of leaf age, inflorescence, temperature, light intensity and moisture conditions on CAM photosynthesis in Phalaenopsis.]-J. jap. Soc. hort. Sci. 60: 125–132, 1991. [In Jap.]

    Article  CAS  Google Scholar 

  • Silvera, K., Santiago, L.S., Winter, K.: Distribution of crassulacean acid metabolism in orchids of Panama: evidence of selection for weak and strong modes.-Funct. Plant Biol. 32: 397–407, 2005.

    Article  CAS  Google Scholar 

  • Ting, I.P.: Crassulacean acid metabolism.-Annu. Rev. Plant Physiol. 36: 595–622, 1985.

    Article  CAS  Google Scholar 

  • Winter, K., Aranda, J., Holtum, J.A.M.: Carbon isotope composition and water-use efficiency in plants with crassulacean acid metabolism.-Funct. Plant Biol. 32: 381–388, 2005.

    Article  CAS  Google Scholar 

  • Winter, K., Medina, E., Garcia, V., Mayoral, M.L., Muniz, R.: Crassulacean acid metabolism in roots of a leafless orchid, Campylocentrum tyrridion Garay & Dunsterv.-J. Plant Physiol. 118: 73–78, 1985.

    CAS  Google Scholar 

  • Winter, K., Wallace, B.J., Stocker, G.C., Roksandic, Z.: Crassulacean acid metabolism in Australian vascular epiphytes and some related species.-Oecologia 57: 129–141, 1983.

    Article  Google Scholar 

  • Zotz, G., Hietz, P.: The physiological ecology of vascular epiphytes: current knowledge, open questions.-J. exp. Bot. 52: 2067–2078, 2001.

    Article  PubMed  CAS  Google Scholar 

  • Zotz, G., Ziegler, H.: The occurrence of crassulacean acid metabolism among vascular epiphytes from central Panama.-New Phytol. 137: 223–229, 1997.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Motomura.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Motomura, H., Ueno, O., Kagawa, A. et al. Carbon isotope ratios and the variation in the diurnal pattern of malate accumulation in aerial roots of CAM species of Phalaenopsis (Orchidaceae). Photosynthetica 46, 531–536 (2008). https://doi.org/10.1007/s11099-008-0090-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11099-008-0090-0

Additional key words

Navigation