Skip to main content
Log in

Evaluation of cold stress of young industrial chicory (Cichorium intybus L.) plants by chlorophyll a fluorescence imaging. I. Light induction curve

  • Original Papers
  • Published:
Photosynthetica

Abstract

Industrial chicory, Cichorium intybus L., is cultivated for the production of inulin. Most varieties of industrial chicory exhibit rather poor early growth, which limits further yield improvements in their European cultivation area. The poor early growth could be due to suboptimum adaptation of the gene pool to growth at low temperatures, sometimes in combination with high light intensities, which is typical of early-spring mornings. We have used chlorophyll (Chl) a fluorescence to evaluate the response of young plants of the cultivar ‘Hera’ to low temperatures and high light intensities. Plants were grown at three temperatures: 16°C (reference), 8°C (intermediate), and 4°C (cold stress). Light-response measurements were carried out at different light intensities in combination with different measurement temperatures. Parameters that quantify the photosystem II (PSII) operating efficiency (including PSII maximum efficiency and PSII efficiency factor) and nonphotochemical quenching (NPQ) are important to evaluate the stress in terms of severity, the photosynthetics processes affected, and acclimation to lower growth temperatures. The results clearly demonstrate that in young industrial chicory plants the photosynthetic system adapts to lower growth temperatures. However, to fully understand the plant response to the stresses studied and to evaluate the long-term effect of the stress applied on the growth dynamics, the subsequent dark relaxation dynamics should also be investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ANOVA :

analysis of variance

Chl:

chlorophyll

EC:

electrical conductivity

F0 :

the minimum Chl fluorescence in dark-adapted state

F0′:

the minimum Chl fluorescence in light-adapted state

Fm :

the maximum Chl fluorescence in dark-adapted state

Fm′:

the maximum Chl fluorescence in light-adapted state

Fq′:

the difference between Fm′ and F′ (measured immediately before application of the saturation pulse used to measure Fm′)

Fq′/Fm′:

the operating quantum efficiency of PSII photochemistry

Fq′/Fv′:

the PSII efficiency factor

Fv :

the variable (differential) fluorescence in dark-adapted state (Fm − F0)

Fv′:

the variable fluorescence in light-adapted state (Fm′ − F0′)

Fv/Fm :

the maximum quantum efficiency of PSII photochemistry in dark-adapted state

Fv′/Fm′:

the maximum quantum efficiency of PSII photochemistry in light-adapted state

Fv/(Fm·F0):

the fraction of PSII centers that are capable of photochemistry

GT:

growth temperature

ML:

measurement light intensity

MT:

measurement temperature

NPQ:

nonphotochemical quenching of the Chl fluorescence signal

PAM:

pulse amplitude modulated

PAR:

photosynthetic active radiation

PSII:

photosystem II

qN :

nonphotochemical quenching coefficient of the Chl fluorescence signal

SE:

standard error

References

  • Adams W.W., III, Demmig-Adams, B.: Chlorophyll fluorescence as a tool to monitor plant responses to the environment. — In: Papageorgiou, G.C., Govindjee (ed.): Chlorophyll a Fluorescence: a Signature of Photosynthesis. Pp. 583–604. Springer, Dordrecht 2004.

    Google Scholar 

  • Alves, P.L.D.A, Magalhaes, A.C.N., Barja, P.R.: The phenomenon of photoinhibition of photosynthesis and its importance in reforestation. — Bot. Rev. 68: 193–208, 2002.

    Article  Google Scholar 

  • Baert, J., Van Bockstaele, E.: Heritability of bolting sensitivity, fresh root weight, inulin content and inulin chain length of chicory (Cichorium intybus L.). — 4th European Symposium on Industrial Crops and Products. Vol. 14. Pp. 188–194. Bonn1999.

    Google Scholar 

  • Baert, J.R.A.: The effect of sowing and harvest date and cultivar on inulin yield and composition of chicory (Cichorium intybus L.) roots. — Indus. Crops Prod. 6: 195–199, 1997.

    Article  CAS  Google Scholar 

  • Baker, N.R.: A possible role for photosystem-II in environmental perturbations of photosynthesis. — Physiol. Plant. 81: 563–570, 1991.

    Article  CAS  Google Scholar 

  • Baker, N.R., Oxborough, K.: Chlorophyll fluorescence as a probe of photosynthetic productivity. — In: Papageorgiou, G.C., Govindjee (ed.): Chlorophyll a fluorescence: a signature of photosynthesis Pp. 65–82. Springer, Dordrecht 2004.

    Google Scholar 

  • Baker, N.R., Rosenqvist, E.: Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities. — J. Exp. Bot. 55: 1607–1621, 2004.

    Article  PubMed  CAS  Google Scholar 

  • Bilger, W., Björkman, O.: Role of the xanthophyll cycle in photoprotection elucidated by measurements of light induced absorbance changes, fluorescence and photosynthesis in leaves of Hedera canariensis. — Photosynth. Res. 25: 173–185, 1990.

    Article  CAS  Google Scholar 

  • Brüggemann, W., Vanderkooij, T.A.W., Vanhasselt, P.R.: Long-term chilling of young tomato plants under low light and subsequent recovery.2. chlorophyll fluorescence, carbon metabolism and activity of ribulose-1,5-bisphosphate carboxylase oxygenase. — Planta 186: 179–187, 1992.

    Article  Google Scholar 

  • Devacht, S., Lootens, P., Carlier, L., Baert, J., Van Waes, J., Van Bockstaele, E.: Evaluation of early vigour and photosynthesis of industrial chicory in relation to temperature. — Photosynth. Res. 91: S2551, 2007.

    Google Scholar 

  • Devacht, S., Lootens, P., Roldán-Ruiz, I., Carlier, L., Baert, J., Van Waes, J., Van Bockstaele, E.: Influence of low temperatures on the growth and photosynthetic activity of industrial chicory, Cichorium intybus L. partim. — Photosynthetica 47: 372–380, 2009.

    Article  CAS  Google Scholar 

  • Dogniaux, R., Lemoine, M., Sneyers, R.: [Année-type moyenne pour le traitement de problèmes de capitation d’ énergie soliare.] — Royal Meteorol. Inst. Belgium, Brussels 1978. [In French.]

    Google Scholar 

  • Ehlert, B., Hincha, D.K.: Chlorophyll fluorescence imaging accurately quantifies freezing damage and cold acclimation responses in Arabidopsis leaves. — Plant Meth. 4: 12, 2008.

    Article  Google Scholar 

  • Fracheboud, Y., Haldimann, P., Leipner, J., Stamp, P.: Chlorophyll fluorescence as a selection tool for cold tolerance of photosynthesis in maize (Zea mays L.). — J. Exp. Bot. 50: 1533–1540, 1999.

    Article  CAS  Google Scholar 

  • Fracheboud, Y., Leipner, J.: The application of chlorophyll fluorescence to study light, temperature and drought stress. — In: DeEll, J.R., Toivonen, P.M.A. (ed.): Practical Applications of Chlorophyll Fluorescence in Plant Biology. Pp. 125–150, Kluwer Academic Publ, Dordrecht 2003.

    Google Scholar 

  • Genty, B., Briantais, J.M., Baker, N.R.: The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorecence. — Biochim. Biophys. Acta 990: 87–92, 1989.

    CAS  Google Scholar 

  • Govindachary, S., Bukhov, N.H., Joly, D., Carpentier, R.: Photosystem II inhibition by moderate light under low temperature in intact leaves of chilling-sensitive and -tolerant plants. — Physiol. Plant. 121: 322–333, 2004.

    Article  PubMed  CAS  Google Scholar 

  • Govindjee: Chlorophyll a fluorescence: a bit of basics and history. — In: Papageorgiou, G.C., Govindjee (ed.): Chlorophyll a Fluorescence: A Signature of Photosynthesis. Pp. 1–42. Springer, Dordrecht 2004.

    Google Scholar 

  • Gray, G.R., Hope, B.J., Qin, X.Q., Taylor, B.G., Whitehead, C.L.:The characterization of photoinhibition and recovery during cold acclimation in Arabidopsis thaliana using chlororphyll fluorescence imaging. — Physiol. Plant. 119: 365–375, 2003.

    Article  CAS  Google Scholar 

  • Hendrickson, L., Ball, M.C., Osmond, C.B., Furbank, R.T., Chow, W.S.: Assessment of photoprotection meachanisms of grapevines at low temperature. — Func. Plant Biol. 30: 631–642, 2003.

    Article  CAS  Google Scholar 

  • Kingston-Smith, A.H., Thomas, H., Foyer, C.H.: Chlorophyll a fluorescence, enzyme and antioxidant analyses provide evidence for the operation f alternative electron sinks during leaf senscence in a stay-green mutant of Festuca pratensis. — Plant Cell Environ. 20: 1323–1337, 1997.

    Article  CAS  Google Scholar 

  • Kodama, H., Horiguchi, G., Nishiuchi, T., Nishimura, M., Iba, K.: Fatty-acid desaturation during chilling acclimation is one of the factors involved in conferring low-temperature tolerance to young tobacco-leaves. — Plant Physiol. 107: 1177–1185, 1995.

    PubMed  CAS  Google Scholar 

  • Koroleva, O.Y., Bruggemann, W., Krause, G.H.: Photoinhibition, xanthophyll cycle and in vivo chlorophyll fluorescence quenching of chilling-tolerant Oxyria digyna and chillingsensitive Zea mays. — Physiol. Plant. 92: 577–584, 1994.

    Article  CAS  Google Scholar 

  • Krause, G.H., Jahns, P.: Non-photochemical energy dissipation determined by chlorophyll fluorescence quenching: Characterization and function. — In: Papageorgiou, G.C., Govindjee (ed.): Chlorophyll a Fluorescence: A Signature of Photosynthesis. Pp. 463–495. Springer, Dordrecht 2004.

    Google Scholar 

  • Kyle, D., Ohad, I., Arntzen, C.J.: Membrane protein damage and repair: Selective loss of a quinone-protein function in chloroplast membranes. — Proc. Nat. Acad. Sci. 81: 4070–4074, 1984.

    Article  PubMed  CAS  Google Scholar 

  • Lambrev, P.H., Tsonev, T., Velikova, V., Georgieva, K., Lambreva, M.D., Yordanov, I., Kovacs, L., Garab, G.: Trapping of the quenched conformation associated with nonphotochemical quenching of chlorophyll fluorescence at low temperature. — Photosynth. Res. 94: 321–332, 2007.

    Article  PubMed  CAS  Google Scholar 

  • Lawson, T., Oxborough, K., Morison, J.I.L., Baker, N.R.: Responses of photosynthetic electron transport in stomatal guard cells and mesophyll cells in intact leaves to light, CO2 and humidity. — Plant Physiol. 128: 52–62, 2002.

    Article  PubMed  CAS  Google Scholar 

  • Leipner, J., Oxborough, K., Baker, N.R.: Primary sites of ozone-induced perturbations of photosynthesis in leaves: identification and characterization in Phaseolus vulgaris using high resolution chlorophyll fluorescence imaging. — J. Exp. Bot. 52: 1689–1696, 2001.

    Article  PubMed  CAS  Google Scholar 

  • Lichtenthaler, H.K., Burkhart, S.: Photosynthesis and high light stress. — Bulg. J. Plant Physiol. 25: 3–16, 1999.

    CAS  Google Scholar 

  • Lootens, P., Devacht, S., Baert, J., Van Waes, J., Van Bockstaele, E., Roldán-Ruiz, I.: Evaluation of cold stress of young industrial chicory (Cichorium intybus L.) plants by chlororphyll a fluorescence imaging. II. Dark relaxation kinetics. — Photosynthetica 49: 185–194, 2011.

    Google Scholar 

  • Lootens, P., Van Waes, J., Carlier, L.: Effect of a short photoinhibition stress on photosynthesis, chlorophyll a fluorescence, and pigment contents of different maize cultivars. Can a rapid and objective stress indicator be found? — Photosynthetica 42: 187–192, 2004.

    Article  CAS  Google Scholar 

  • Madhava Rao, K.V.: Introduction. — In: Madhava Rao, K.V., Raghavendra, A.S., Janardhan Reddy, K. (ed.): Physiology and Molecular Biology of Stress Tolerance in Plants. Pp. 1–14. Springer, Dordrecht 2006.

    Chapter  Google Scholar 

  • Nedbal, L., Whitmarsh, J.: Chlorofyll fluorescence imaging of leaves and fruits. — In: Papageorgiou, G.C., Govindjee (ed.): Chlorophyll a Fluorescence: A Signature of Photosynthesis. Pp. 389–407. Springer, Dordrecht 2004.

    Google Scholar 

  • Osmond, C.B.: What is photoinhibition? Some insights from comparisons of shade and sun plants. — In: Baker, N.R., Bowyer, J.R. (ed.): Photoinhibition of Photosynthesis: from Molecular Mechanisms to the Field. Pp. 1–24. BIOS Scientific Publ., Oxford 1994.

    Google Scholar 

  • Oxborough, K.: Imaging of chlorophyll a fluorescence: theoretical and practical aspects of an emerging technique for the monitoring of photosynthetic performance. — J. Exp. Bot. 55: 1195–1205, 2004.

    Article  PubMed  CAS  Google Scholar 

  • Oxborough, K., Baker, N.R.: Resolving chlorophyll a fluorescence images of photosynthetic efficiency into photochemical components — calculation of qP and Fv′/Fm′ without measuring F0′. — Photosynth. Res. 54: 135–142, 1997.

    Article  CAS  Google Scholar 

  • Palta, J.P., Whitaker, B.D., Weiss, L.S.: Plasma-membrane lipids associated with genetic-variability in freezing tolerance and cold-acclimation of Solanum species. — Plant Physiol. 103: 793–803, 1993.

    PubMed  CAS  Google Scholar 

  • Sayed, O.H.: Chlorophyll fluorescence as a tool in cereal crop research. — Photosynthetica 41: 321–330, 2003.

    Article  CAS  Google Scholar 

  • Venema, J.H., Eekhof, M., van Hasselt, P.R.: Analysis of lowtemperature tolerance of a tomato (Lycopersicon esculentum) hybrid with chloroplasts from a more chilling-tolerant L. hirsutum accession. — Ann. Bot. 85: 799–807, 2000.

    Article  Google Scholar 

  • Wolfe, D.W.: Low-temperature effects on early vegetative growth, leaf gas-exchange and water potential of chillingsensitive and chilling-tolerant crop species. — Ann. Bot. 67: 205–212, 1991.

    Google Scholar 

Download references

Acknowledgements

The authors thank to Laurent Gevaert, Luc Van Gijseghem and Christian Hendrickx for their help with the measurements and the cultivation and maintenance of the plants. Miriam Levenson is acknowledged for her English language review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Lootens.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Devacht, S., Lootens, P., Baert, J. et al. Evaluation of cold stress of young industrial chicory (Cichorium intybus L.) plants by chlorophyll a fluorescence imaging. I. Light induction curve. Photosynthetica 49, 161–171 (2011). https://doi.org/10.1007/s11099-011-0015-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11099-011-0015-1

Additional key words

Navigation