Skip to main content
Log in

Changes in response to drought stress of triticale and maize genotypes differing in drought tolerance

  • Published:
Photosynthetica

Abstract

Direct effects and after-effects of soil drought for 7 and 14 d were examined on seedling dry matter, leaf water potential (ψ), leaf injury index (LI), and chlorophyll (Chl) content of drought (D) resistant and sensitive triticale and maize genotypes. D caused higher decrease in number of developed leaves and dry matter of shoots and roots in the sensitive genotypes than in the resistant ones. Soil D caused lower decrease of ψ in the triticale than maize leaves. Influence of D on the Chl b content was considerably lower than on the Chl a content. In triticale the most harmful D impact was observed for physiologically younger leaves, in maize for the older ones. A period of 7-d-long recovery was too short for a complete removal of an adverse influence of D.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Chl:

chlorophyll

D:

drought

DM:

dry matter

DR:

recovery from drought

LI:

leaf injury index

R:

root

RGR:

relative growth rate

S:

shoot

ψ:

leaf water potential

References

  • Ali, H.C.: Comparison of chlorophyll content and stomatal size of inbred lines and their hybrids of corn (Zea mays L.).-Z. Acker-Pflanzenbau 145: 166–170, 1977.

    CAS  Google Scholar 

  • Arnon, D.I.: Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris.-Plant Physiol. 24: 1–15, 1949.

    PubMed  CAS  Google Scholar 

  • Blum, A., Ebercon, A.: Cell membrane stability as a measure of drought and heat tolerance in wheat.-Crop Sci. 21: 43–47, 1981.

    Article  Google Scholar 

  • Boyer, J.S.: Plant productivity and environment.-Science 218: 443–448, 1982.

    Article  PubMed  CAS  Google Scholar 

  • Bukhov, N.G., Sabat, S.C., Mohanty, P.: Analysis of chlorophyll a fluorescence changes in weak light in heat treated Amaranthus chloroplasts.-Photosynth. Res. 23: 81–87, 1990.

    Article  CAS  Google Scholar 

  • Chaves, M.M., Pereira, J.S., Maroco, J., Rodrigues, M.L., Ricardo, C.P.P., Osorio, L.M., Carvalho, I., Faria, T., Pinheiro, C.: How plants cope with water stress in the field. Photosynthesis and growth.-Ann. Bot. 89: 907–916, 2002.

    Article  PubMed  CAS  Google Scholar 

  • Conroy, J.P., Virgona, J.M., Smillie, R.M., Barlow, E.W.: Influence of drought acclimation and CO2 enrichment on osmotic adjustment and chlorophyll a fluorescence of sunflower during drought.-Plant Physiol. 86: 1108–1115, 1988.

    Article  PubMed  CAS  Google Scholar 

  • Day, T.A., Vogelmann, T.C.: Alternations in photosynthesis and pigment distributions in pea leaves following UV-B exposure.-Physiol. Plant. 94: 433–440, 1995.

    Article  CAS  Google Scholar 

  • Fischer, R.A., Maurer, R.: Drought resistance in spring wheat cultivars. I Grain yield responses.-Aust. J. agr. Res. 29: 897–912, 1978.

    Article  Google Scholar 

  • Grzesiak, M.T.: [Effect of Drought Stress on Photosynthetic Apparatus and Productivity of Triticale and Maize Genotypes Differing in Drought Tolerance.]-PhD. Thesis. Cracow Agricultural University, Cracow 2004. [In Polish.]

    Google Scholar 

  • Grzesiak, M.T., Grzesiak, S., Skoczowski, A.: Changes of leaf water potential and gas exchange during and after drought in triticale and maize genotypes differing in drought tolerance.-Photosynthetica 44: 561–568, 2006.

    Article  Google Scholar 

  • Grzesiak, S.: Genotypic variation between maize (Zea mays L.) single cross hybrids in response to drought stress.-Acta Physiol. Plant. 23: 443–456, 2001.

    Google Scholar 

  • Grzesiak, S., de Barbaro, A., Filek, W.: Assimilation, translocation and accumulation of 14C in two maize (Zea mays L.) hybrids of different drought tolerance.-Photosynthetica 27: 385–393, 1992.

    Google Scholar 

  • Grzesiak, S., Grzesiak, M.T., Filek, W., Stabryła, J.: Evaluation of physiological screening tests for breeding drought resistant triticale (×Triticosecale Wittmack).-Acta Physiol. Plant. 25: 29–37, 2003.

    Google Scholar 

  • Haupt-Herting, S., Fock, H.P.: Oxygen exchange in relation to carbon assimilation in water-stressed leaves during photosynthesis.-Ann. Bot. 89: 851–859, 2002.

    Article  PubMed  CAS  Google Scholar 

  • Kriedemann, P.E., Downton, J.S.: Photosynthesis.-In: Paleg, L.G., Aspinall, D. (ed.): The Physiology and Biochemistry of Drought Resistance in Plants. Pp. 283–314. Academic Press, Sydney-New York-London-Toronto-San Francisco 1981.

    Google Scholar 

  • Květ, J., Ondok, J.P., Nečas, J., Jarvis, P.G.: Methods of growth analysis.-In: Šesták, Z., Čatský, J., Jarvis, P.G. (ed.): Plant Photosynthetic Production. Manual of Methods. Pp. 343–391. Dr W. Junk N.V. Publishers, The Hague 1971.

    Google Scholar 

  • Lawlor, D.W.: Limitation to photosynthesis in water-stressed leaves: Stomata vs. metabolism and the role of ATP.-Ann. Bot. 89: 871–885, 2002.

    Article  PubMed  CAS  Google Scholar 

  • Lawlor, D.W., Cornic, G.: Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants.-Plant Cell Environ. 25: 275–294, 2002.

    Article  PubMed  CAS  Google Scholar 

  • Lorens, G.F., Bennett, J.M., Loggale, L.B.: Differences in drought resistance between two corn hybrids. II. Component analysis and growth rates.-Agron. J. 79: 808–813, 1987.

    Article  Google Scholar 

  • Martiniello, P., Lorenzoni, C.: Response of maize genotypes to drought tolerance tests.-Maydica 30: 361–370, 1985.

    Google Scholar 

  • Morgan, J.M.: Osmoregulation and water stress in higher plants.-Annu. Rev. Plant Physiol. 35: 299–319, 1984.

    Article  Google Scholar 

  • Morgan, J.M.: Osmotic components and properties associated with genotypic differences in osmoregulation in wheat.-Aust. J. Plant Physiol. 19: 67–76, 1992.

    Article  Google Scholar 

  • Muller, J.E., Whitsitt, M.S.: Plant cellular response to water deficit.-Plant Growth Regul. 20: 41–46, 1996.

    Google Scholar 

  • Palta, J.P.: Stress interactions at the cellular and membrane levels.-HortScience 25: 1337–1381, 1990.

    Google Scholar 

  • Passioura, J.B., Condon, A.G., Richards, R.A.: Water deficits, the development of leaf area and crop productivity.-In: Smith, J.A.C., Griffiths, H. (ed.): Water Deficits. Plant Responses from Cell to Community. Pp. 253–264. BIOS Scientific Publ., Oxford 1993.

    Google Scholar 

  • Poljakoff-Mayber, A.: Ultrastuctural consequences of drought.-In: Paleg, L.G., Aspinall, D. (ed.): The Physiology and Biochemistry of Drought Resistance in Plants. Pp. 389–403. Academic Press, Sydney-New York-London-Toronto-San Francisco 1981.

    Google Scholar 

  • Richards, R.A.: Variation between and within species of rape-seed (Brassica campestris and B. napus) in response to drought stress. III. Physiological and physicochemical characters.-Aust. J. agr. Res. 29: 495–501, 1978.

    Google Scholar 

  • Riera, M., Valon, C., Fenzi, F., Giraudat, J., Leung, J.: The genetics of adaptive responses to drought stress: abscisic acid-dependent and abscisic acid-independent signalling components.-Physiol. Plant. 123: 111–119, 2005.

    Article  CAS  Google Scholar 

  • Schweiger, J., Lang, M., Lichtenthaler, H.K.: Differences in fluorescence excitation spectra of leaves between stressed and non-stressed plants.-J. Plant Physiol. 148: 536–547, 1996.

    CAS  Google Scholar 

  • Šesták, Z., Šiffel, P.: Leaf-age related differences in chlorophyll fluorescence.-Photosynthetica 33: 347–369, 1997.

    Google Scholar 

  • Shangguan, Z., Shao, M., Dyckmans, J.: Interaction of osmotic adjustment and photosynthesis in winter wheat under soil drought.-J. Plant Physiol. 154: 753–758, 1999.

    CAS  Google Scholar 

  • Smirnoff, N., Colombe, S.V.: Drought influences the activity of enzymes of the chloroplast hydrogen peroxide scavenging system.-J. exp. Bot. 39: 1097–1108, 1988.

    Article  CAS  Google Scholar 

  • Sullivan, C.Y., Eastin, J.D.: Plant physiological responses to water stress.-Agr. Meteorol. 14: 113–127, 1974.

    Article  Google Scholar 

  • Tang, A.C., Kawamitsu, Y., Kanechi, M., Boyer, J.S.: Photosynthetic oxygen evolution at low water potential in leaf discs lacking an epidermis.-Ann. Bot. 89: 861–870, 2002.

    Article  PubMed  Google Scholar 

  • Trapani, N., Gentinetta, E.: Screening of maize genotypes using drought tolerance tests.-Maydica 29: 89–100, 1984.

    Google Scholar 

  • Vietor, D.M., Ariyanayagam, R.P., Musgrave, R.B.: Photosynthetic selection of Zea mays L. I. Plant age and leaf position effects and relationship between leaf and canopy rates.-Crop Sci. 17: 567–573, 1977.

    Article  CAS  Google Scholar 

  • Winter, S.R., Musick, J.T., Porter K.B.: Evaluation of screening techniques for breeding drought resistant winter wheat.-Crop Sci. 28: 512–516, 1988.

    Article  Google Scholar 

  • Zhang, J.-Y., Broeckling, C.D., Blancaflor, E.B., Sledge, M.K., Sumner, L.W., Wang, Z.-Y.: Overexpression of WXPI, a putative Medicago truncatula AP2 domain-containing transcription factor gene, increases cuticular wax accumulation and enhances drought tolerance in transgenic alfalfa (Medicago sativa).-Plant J. 42: 689–707, 2005.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. T. Grzesiak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grzesiak, M.T., Rzepka, A., Hura, T. et al. Changes in response to drought stress of triticale and maize genotypes differing in drought tolerance. Photosynthetica 45, 280–287 (2007). https://doi.org/10.1007/s11099-007-0045-x

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11099-007-0045-x

Additional key words

Navigation