Skip to main content
Log in

Differences in physiological characteristics between two wheat cultivars exposed to field water deficit conditions

  • Research Papers
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

We investigated various physiological characteristics of two wheat (Triticum aestivum L.) cultivars differing in drought tolerance, i.e., Shannong16 (a drought-tolerant cultivar) and Weimai8 (a high-yield wheat cultivar under well-watered conditions), under field drought conditions. The experiments were conducted over a two-year period. Drought stress (DS) was imposed by controlling irrigation and sheltering the plants from rain. Compared with Weimai8, Shannong16 exhibited the better water balance, the higher osmotic adjustment, the slower degradation of chlorophyll, and the higher net photosynthetic rate under drought-stress conditions. At the same time, we observed that Shannong16 maintained more integrated chloroplast and thylakoid ultrastructure in flag leaves than Weimai8 under field drought stress. The different levels of antioxidant competence, indicated by MDA content, antioxidant enzyme activities, and the level of superoxide radicals observed in the two wheat cultivars may be involved in the different levels of drought resistance of these cultivars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

APX:

ascorbate peroxidase

CAT:

catalase

C i :

intercellular CO2 concentration

DAA:

days after anthesis

E :

transpiration rate

G s :

stomatal conductance

DS:

drought stress

OA:

osmotic adjustment

P n :

net photosynthetic rate

POD:

peroxidase

PS:

photosystem

RWC:

relative water content

SOD:

superoxide dismutase

References

  1. Ahuja, I., de Vos, R.C., Bones, A.M., and Hall, R.D., Plant molecular stress responses face climate change, Trends Plant Sci., 2010, vol. 15, pp. 664–674.

    Article  CAS  PubMed  Google Scholar 

  2. Cook, E.R., Seager, R., Cane, M.A., and Stahle, D.W., North American droughts of the last millennium from a gridded network of tree-ring data, Earth Sci. Rev., 2007, vol. 81, pp. 93–134.

    Article  Google Scholar 

  3. Martinez, J.P., Silva, H., Ledent, J.F., and Pinto, M., Effect of drought stress on the osmotic adjustment, cell wall elasticity and cell volume of six cultivars of common beans (Phaseolus vulgaris L.), Eur. J. Agron., 2007, vol. 26, pp. 30–38.

    Article  Google Scholar 

  4. Rampino, P., Pataleo, S., Gerardi, C., Mita, G., and Perrotta, C., Drought stress response in wheat: physiological and molecular analysis of resistant and sensitive genotypes, Plant Cell Environ., 2006, vol. 29, pp. 2143–2152.

    Article  CAS  PubMed  Google Scholar 

  5. Chaves, M.M., Flexas, J., and Pinheiro, C., Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell, Ann. Bot., 2009, vol. 103, pp. 551–560.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Huseynova, I.M., Suleymanov, S.Y., and Aliyev, J.A., Structural-functional state of thylakoid membranes of wheat genotypes under water stress, Biochim. Biophys. Acta, 2007, vol. 1767, pp. 869–875.

    Article  CAS  PubMed  Google Scholar 

  7. Wang, G.P., Li, F., Zhang, J., Zhao, M.R., Hui, Z., and Wang, W., Overaccumulation of glycine betaine enhances tolerance of the photosynthetic apparatus to drought and heat stress in wheat, Photosynthetica, 2010, vol. 48, pp. 30–41.

    Article  CAS  Google Scholar 

  8. Smirnoff, N., The role of active oxygen in the response of plants to water deficit and desiccation, New Phytol., 1993, vol. 125, pp. 27–58.

    Article  CAS  Google Scholar 

  9. Sharada, P. and Naik, G.R., Physiological and biochemical responses of groundnut genotypes to drought stress, World J. Sci. Technol., 2011, vol. 1, pp. 60–66.

    CAS  Google Scholar 

  10. Lichtenthaler, H.K., Chlorophylls and carotenoids: pigments of photosynthetic biomembranes, Methods Enzymol., 1987, vol. 148, pp. 350–382.

    Article  CAS  Google Scholar 

  11. Jiang, C.D., Gao, H.Y., and Zou, Q., Changes of donor and acceptor in photosystem 2 complex induced by iron deficiency in attached soybean and maize leaves, Photosynthetica, 2003, vol. 41, pp. 267–271.

    Article  CAS  Google Scholar 

  12. Bates, L.S., Waldran, R.P., and Teare, I.D., Rapid determination of free proline for water stress studies, Plant Soil, 1973, vol. 39, pp. 205–208.

    Article  CAS  Google Scholar 

  13. Yemm, E.W. and Willis, A.J., The estimation of carbohydrates in plant extracts by anthrone, Biochem. J., 1954, vol. 57, pp. 508–514.

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Cakmak, I. and Marschner, H., Magnesium deficiency and high light intensity enhance activities of superoxide dismutase, ascorbate peroxidase and glutathione reductase in bean leaves, Plant Physiol., 1992, vol. 98, pp. 1222–1227.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Durner, J. and Klessig, D.F., Salicylic acid is a modulator of tobacco and mammalian catalases, J. Biol. Chem., 1996, vol. 271, pp. 28 482–28 502.

    Article  Google Scholar 

  16. Scebba, F., Sebastiani, L., and Vitagliano, C., Activities of antioxidant enzymes during senescence of Prunus armeniaca leaves, Biol. Plant., 2001, vol. 44, pp. 41–46.

    Article  CAS  Google Scholar 

  17. Tian, F.X., Gong, J.F., Wang, G.P., Wang, G.K., Fan, Z.Y., and Wang, W., Improved drought resistance in a wheat stay-green mutant, tasg1, under field conditions, Biol. Plant., 2012, vol. 56, pp. 509–515.

    Article  Google Scholar 

  18. Quan, R.D., Shang, M., Zhang, H., Zhao, Y.X., and Zhang, J.R., Improved chilling tolerance by transformation with betA gene for the enhancement of glycinebetaine synthesis in maize, Plant Sci., 2004, vol. 166, pp. 141–149.

    Article  CAS  Google Scholar 

  19. Ma, Q.Q., Wang, W., Li, Y.H., Li, D.Q., and Zou, Q., Alleviation of photoinhibition in drought-stressed wheat (Triticum aestivum L.) by foliar-applied glycinebetaine, J. Plant Physiol., 2006, vol. 163, pp. 165–175.

    Article  CAS  PubMed  Google Scholar 

  20. Kudoyarova, G.R., Kholodova, V.P., and Veselov, D.S., Current state of the problem of water relations in plants under water deficit, Russ. J. Plant Physiol., 2013, vol. 60, pp. 165–175.

    Article  CAS  Google Scholar 

  21. Reynolds, M., Dreccer, F., and Trethowan, R., Drought-adaptive traits derived from wheat wild relatives, J. Exp. Bot., 2007, vol. 58, pp. 177–186.

    Article  CAS  PubMed  Google Scholar 

  22. Liu, C.C., Liu, Y.G., Guo, K., Fan, D.Y., Li, G.Q., Zheng, Y.R., Yu, L.F., and Yang, R., Effect of drought on pigments, osmotic adjustment and antioxidant enzymes in six woody plant species in karst habitats of southwestern China, Environ. Exp. Bot., 2011, vol. 71, pp. 174–183.

    Article  CAS  Google Scholar 

  23. Maxwell, K. and Johnson, G.N., Chlorophyll fluorescence-a practical guide, J. Exp. Bot., 2000, vol. 51, pp. 659–668.

    Article  CAS  PubMed  Google Scholar 

  24. Mahajan, S. and Tuteja, N., Cold, salinity and drought stresses: an overview, Arch. Biochem. Biophys., 2005, vol. 444, pp. 139–158.

    Article  CAS  PubMed  Google Scholar 

  25. Gill, S.S. and Tuteja, N., Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants, Plant Physiol. Biochem., 2010, vol. 48, pp. 909–930.

    Article  CAS  PubMed  Google Scholar 

  26. Foyer, C.H. and Noctor, G., Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses, Plant Cell, 2005, vol. 17, pp. 1866–1875.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Farooq, M., Wahid, A., Kobayashi, N., Fujita, D., and Basra, S.M.A., Plant drought stress: effects, mechanisms and management, Agron. Sustain. Dev., 2009, vol. 29, pp. 185–212.

    Article  Google Scholar 

  28. Chaves, M.M., Flexas, J., and Pinheiro, C., Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell, Ann. Bot., 2009, vol. 103, pp. 551–560.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Aarti, P.D., Tanaka, R., and Tanaka, A., Effects of oxidative stress on chlorophyll biosynthesis in cucumber (Cucumis sativus) cotyledons, Physiol. Plant., 2006, vol. 128, pp. 186–197.

    Article  CAS  Google Scholar 

  30. Sohrabi, Y., Heidari, G., Weisany, W., Golezani, K.G., and Mohammadi, K., Changes of antioxidative enzymes, lipid peroxidation and chlorophyll content in chickpea types colonized by different Glomus species under drought stress, Symbiosis, 2012, vol. 56, pp. 5–18.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Wang.

Additional information

This text was submitted by the authors in English.

These authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Y.L., Guo, Q.F., Luo, Y. et al. Differences in physiological characteristics between two wheat cultivars exposed to field water deficit conditions. Russ J Plant Physiol 61, 451–459 (2014). https://doi.org/10.1134/S1021443714030157

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443714030157

Keywords

Navigation